首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cs4[La(NO3)6](NO3) · HNO3: The First Nitric Acid Adduct of a Ternary Alkali Lanthanide Nitrate In the crystal structure of Cs4[La(NO3)6](NO3). HNO3 (monoclinic, P21/c, Z = 2, a = 787.3(2); b = 1353.0(3); c = 1141.8(7) pm; β = 94,37(3)°) La3+ has a coordination number of twelve (six bidentate nitrate ligands). The structure may be viewed at as a layer structure: Layers of the composition [Cs(1)4La2(NO3)12]2?, and [Cs(2)4(NO3)2(HNO3)2]2+ are stacked alternatively in the [100] direction.  相似文献   

2.
Ternary Lithium Rare Earth Nitrates with Lonesome Nitrate Ions: Li3[M(NO3)5](NO3) (M = Gd? Lu, Y). The Crystal Structure of Li3Er(NO3)6 Single crystals of the ternary nitrate Li3Er(NO3)6 are obtained from a solution of “Er(NO3)3” in the melt of LiNO3. In Li3Er(NO3)6 (monoclinic, P21/n, Z = 4; a = 776.0(1); b = 748.86(8); c = 2 396(1) pm; β = 90.76(3)°; R1 = 0.0490; wR2 = 0.0792), Er3+ is surrounded by five bidentate nitrate ligands yielding the anionic units [Er(NO3)5]2?. These are arranged in the direction of the 21 screw axis. Two lonesome NO3? ions are in the middle of such a “helix” and are connected by Li+ with the anions [Er(NO3)5]2?. The helices are moved against each other by about half of the lattice constant a and are connected by further Li+ ions.  相似文献   

3.
Rubidium Hexaamidolanthanate and -neodymate, Rb3[La(NH2)6] and Rb3[Nd(NH2)6]; Compounds. Structurally Related to K3[Cr(OH)6] and K4CdCl6 Colourless Rb3[La(NH2)6] (a = 12.298(4) Å, c = 13.759(2) Å, N = 6, R3 c) and pale blue Rb3[Nd(NH2)6] (a = 12.199(6) Å, c = 13.626(4) Å, N = 6, R32) have been prepared by the reaction of the corresponding metals (Rb: La resp. Nd = 3:1) with NH3(P(NH3) = 4–4.5 kbar) at 300°C. Single crystal x-ray methods gave their structures. It is shown by space group relations that these compounds are structurally related to one another and to further ternary amides as well as to K3[Cr(OH)6] and K4CdCl6.  相似文献   

4.
Synthesis and Structure of the Ternary Ammonium Nitrates (NH4)2[M(NO3)5] (M = Tb? Lu, Y) Single crystals of the ternary ammonium nitrates (NH4)2[M(NO3)5] (M = Tb? Lu, Y) are obtained from the solution of the sesquioxides in a melt of NH4NO3 and sublimation of the excess NH4NO3. In the crystal structure of (NH4)2[Tm(NO3)5] (trigonal, P31, Z = 3; a = 1 123.76(8), c = 930.1(1) pm; R = 0.062; Rw = 0.034) Tm3+ is surrounded by five bidentate nitrate ligands. The isolated [Tm(NO3)5]2? groups are held together by ammonium ions.  相似文献   

5.
Formation of NH4[Hg3(NH)2](NO3)3 and Transformation to [Hg2N](NO3) NH4[Hg3(NH)2](NO3)3 ( 1 ) and [Hg2N](NO3) ( 2 ) are obtained from conc. aqueous ammonia solutions of Hg(NO3)2 at ambient temperature and under hydrothermal conditions at 180 °C, respectively, as colourless and dark yellow to light brown single crystals. The crystal structures {NH4[Hg3(NH)2](NO3)3: cubic, P4132, a = 1030.4(2) pm, Z = 4, Rall = 0.028; [Hg2N](NO3): tetra gonal, P43212, a = 1540.4(1), c = 909.8(1) pm, Z = 4, Rall = 0.054} have been determined from single crystal data. Both exhibit network type structures in which [HNHg3] and [NHg4] tetrahedra of the partial structures of 1 and 2 are connected via three and four vertices, respectively. 1 transforms at about 270 °C in a straightforward reaction to 2 whereby the decomposition products of NH4NO3 are set free. 2 decomposes at about 380 °C forming yellow HgO. Most certainly, 1 is identical with a mineral previously analyzed as “Hg(NH2)(NO3)” with the same Hg:N:O ratio.  相似文献   

6.
Synthesis, Structure, and Thermolysis of the (NH4)3[M2(NO3)9] (M ? La? Gd) The ternary ammonium nitrates (NH4)3[M2(NO3)9] (M ? La-Gd) are obtained as single crystals from a solution of the respective sesquioxides in a melt of NH4NO3 and sublimation of the excess NH4NO3. In the crystal structure of (NH4)3[Pr2(NO3)9] (cubic, P4332, Z = 4, a = 1 377.0(1) pm, R = 0.038, Rw = 0.023) Pr3+ is surrounded by six bidentate nitrate ligands of which three are bridging to neighbouring Pr3+ ions. This results in a branched folded chain, held together by the NH4+ ions which occupy cavities in the structure. (NH4)3[Pr2(NO3)9] is the first intermediate product of the thermal decomposition of (NH4)2[Pr(NO3)5(H2O)2] · 2H2O.  相似文献   

7.
[Cu(NH3)2](NO3)2 ( I ) and [Cu(NH3](NO3)2 ( II ) were synthesized by interaction of molten NH4NO3 with [Cu(NH3)4](NO3)2 and Cu(NO3)2 · 3 H2O, respectively, at 180 to 195°C for 24 hr. According to X-Ray single crystal analysis, I is orthorhombic (sp. gr. Pbca) with a = 5.678(1), b = 9.765(2), c = 11.596(2) Å, Z = 4, R = 0.060; II is monoclinic (sp. gr. P21/c) with a = 6.670(1), b = 8.658(2), c = 9.661(2) Å, β = 101.78(2)°, Z = 4, R = 0.027. In both structures, the nearest coordination environment of Cu is a slightly distorted square formed by N (from NH3) and O atoms (from NO3 groups). The structure of I consists of centrosymmetrical [Cu(NH3)2](NO3)2 molecules linked by hydrogen bonds. The Cu? N and Cu? O distances are 1.98 and 2.01 Å, respectively. In II , the Cu? N distance is 1.95 Å, the Cu? O distances are 1.96, 2.02, and 2.03 Å. The [CuO3NH3] squares are connected by NO3 bridges into zigzag chains, which are linked into layers by longer Cu? O interactions (2.31 Å). Obviously, the layers are additionally strengthened and held together by hydrogen bonds.  相似文献   

8.
The zirconium nitrate complexes (NO2)[Zr(NO3)3(H2O)3]2(NO3)3 (1), Cs[Zr(NO3)5] ((2), (NH4)[Zr(NO3)5](HNO3) (3), and (NO2)0.23(NO)0.77[Zr(NO3)5] ((4) were prepared by crystallization from nitric acid solutions in the presence of H2SO4 or P2O5. The complexes were characterized by X-ray diffraction. The crystal structure of 1 consists of nitrate anions, nitronium cations, and [Zr(NO3)3(H2O)3]+ complex cations in which the ZrIV atom is coordinated by three water molecules and three bidentate nitrate groups. The coordination polyhedron of the ZrIV atom is a tricapped trigonal prism formed by nine oxygen atoms. The island structures of 2 and 3 contain [Zr(NO3)5]? anions and Cs+ or NH4 + cations, respectively. In addition, complex 3 contains HNO3 molecules. Complex 4 differs from (NO2)[Zr(NO3)5] in that three-fourth of the nitronium cations in 4 are replaced by nitrosonium cations NO+, resulting in a decrease in the unit cell parameters. In the [Zr(NO3)5]? anion involved in complexes 2–4, the ZrIV atom is coordinated by five bidentate nitrate groups and has an unusually high coordination number of 10. The coordination polyhedron is a bicapped square antiprism.  相似文献   

9.
Crystal Structure of (NH4)3SnF7: A Double Salt According to (NH4)3[SnF6]F and not (NH4)4SnF8 (NH4)3SnF7 is obtained as colourless single crystals from the reaction of NH4HF2 with tin powder at 300°C. The crystal structure (cubic, Pm3m, Z = 1, a = 602.5(1) pm at 293 K; a = 598.0(1) pm at 100 K) contains [SnF6]2? octahedra and lonesome F? ions surrounded by NH4+ cations only; it may be considered as a derivative of the Cu3Au-type of structure according to Cu3[Au]□ ?(NH4)3[SnF6]F. The F? ions of the [SnF6]2? octahedra with their Sn4+ centre in the origin of the unit cell at m3m are disordered in different ways at 293 and 100 K, respectively.  相似文献   

10.
Synthesis and Crystal Structure of Na10[P4(NH)6N4](NH2)6(NH3)0.5 with an Adamantane-like Anion [P4(NH)6N4]4? Crystals of Na10[P4(NH)6N4](NH2)6(NH3)0.5 were obtained by the reaction of P3N5 with NaNH2 (molar ratio 1:20) within 5 d at 600°C in autoclaves. The following data characterize X-ray investigations: Fm3 m, Z = 8, a = 15.423(2) Å, Z(F) = 261 with F ≥ 3 σ(F) Z(Variables) = 27, R/Rw = 0.086/0.089 The compound contains the hitherto unknown anion [P4(NH)6N4]4?, which resembles adamantane. The total structure can be described as follows: The centers of gravity of units of [Na8(NH2)6(NH3)]2+ – 8Na+ on the corners of a cube, 6NH2? on the ones of an inscribed octahedron with NH3 in the center – follow the motif of a cubic-closest packed arrangement. Units of [Na12(NH2)6]6+ – 12Na+ on the corners of a cuboctahedron and 6NH2? on the ones of an inscribed octahedron – occupy all octahedral and those of [P4(NH)6N4]4? all tetrahedral sites.  相似文献   

11.
Blue crystals of metal nitratocuprates(II), M3[Cu(NO3)4](NO3) (M = K ( I ), NH4 ( II ), Rb ( III )) and Cs2[Cu(NO3)4] ( IV ) were synthesized from Cu(NO3)2 · 3 H2O and MNO3 by heating at 100–140 °C during 3–12 h. X-ray single crystal structures for isotypic I and II reveal the presence of the [Cu(NO3)4]2– and NO3 anions and M+ cations. Structure IV contains [Cu(NO3)4]2– and Cs+. In structures I , II , and IV , Cu atoms have a square-planar coordination [CuO4] with short Cu–O distances of 1.92–2.00 Å, the oxygen atoms belonging to four different NO3 groups. Each coordinated NO3 group is a nonsymmetrical bidentate ligand with the second, longer Cu–O distance from 2.38 to 2.74 Å. Rubidium derivative III was shown to be isotypic to I on the basis of unit cell dimensions and symmetry. Eight-coordinate metal(II) environment in tetranitrates is compared for transition metals with different electronic configurations.  相似文献   

12.
Action of Ammonium Fluoride on Scandium: Synthesis and Crystal Structures of (NH4)3[ScF6] and [Cu(NH3)4]3[ScF6]2 The action of (NH4)F on scandium in copper ampoules yields either (NH4)3[ScF6] or ScF3 and a small quantity of [Cu(NH3)4]3[ScF6]2, respectively, depending upon the molar ratio of the educts (NH4)F : Sc (6 : 1 and 4 : 1, respectively) and temperature. (NH4)3[ScF6] crystallizes with the cryolite type of structure: monoclinic, P21/n, Z = 2; a = 650.0(2); b = 651.4(2); c = 949.0(2) pm; β = 90.40(2)°, [Cu(NH3)4]3[ScF6]2 is triclinic, P‐1, Z = 1; a = 821.1(2); b = 821.2(2); c = 822.7(2) pm; α = 90.04(3); β = 90.00(3); γ = 90.16(3)°. In its chemical behaviour against (NH4)F, scandium parallels aluminium rather than gallium.  相似文献   

13.
Potassium Hexaydroxochromate(III), K3[Cr(OH)6]: An Example for a New Synthetic Way to Metal Hydroxides and Hydroxometallates The comproportionation of nitrate with amide ions in supercritical ammonia leads to the formation of hydroxide ions and elementary nitrogen: [Cr(NH3)6](NO3)3 reacts with KNH2 at 250°C and 6 kbar NH3-pressure to K3[Cr(OH)6], K(H2O)OH and an unknown yellow microcrystalline phase. The bluegreen hydroxochromate is well crystallized. The x-ray structure determination on K3[Cr(OH)6] gave the atomic arrangement inclusive the hydrogen position. The unit cell with a = 10.672(4) Å and c = 11.083(3) Å contains six formular units; the space group is R3 c. The chemical bonding in this compound is discussed.  相似文献   

14.
Metal Ampoules as Mini‐Autoclaves: Syntheses and Crystal Structures of [Al(NH3)4Cl2][Al(NH3)2Cl4] and (NH4)2[Al(NH3)4Cl2][Al(NH3)2Cl4]Cl2 The salts [Al(NH3)4Cl2]+[Al(NH3)2Cl4]≡AlCl3 · 3 NH3 ( 1 ) and (NH4+)2[Al(NH3)4Cl2]+[Al(NH3)2Cl4](Cl)2≡ AlCl3 · 3 NH3 · (NH4)Cl ( 2 ) have been obtained as single crystals during the reactions of aluminum and aluminum trichloride, respectively, with ammonium chloride in sealed Monel metal containers. The crystal structure of 1 was determined again [triclinic, P‐1; a = 574.16(10); b = 655.67(12); c = 954.80(16) pm; α = 86.41(2); β = 87.16(2); γ = 84.89(2)°], that of 2 for the first time [monoclinic, I2/m; a = 657.74(12); b = 1103.01(14); c = 1358.1(3) pm; β = 103.24(2)°].  相似文献   

15.
The thermal decompositions of polycrystalline samples of [Ni(NH3)6](NO3)2 were studied by thermogravimetric analysis with simultaneous gaseous products of the decomposition identified by a quadruple mass spectrometer. Two measurements were made for samples placed in alumina crucibles, heated from 303 K up to 773 K in the flow (80 cm3 min?1) of Ar 6.0 and He 5.0, at a constant heating rate of 10 K min?1. Thermal decomposition process undergoes two main stages. First, the deamination of [Ni(NH3)6](NO3)2 to [Ni(NH3)2](NO3)2 occurs in four steps, and 4NH3 molecules per formula unit are liberated. Then, decomposition of survivor [Ni(NH3)2](NO3)2 undergoes directly to the final decomposition products: NiO1+x, N2, O2, nitrogen oxides and H2O, without the formation of a stable Ni(NO3)2, because of the autocatalytic effect of the formed NiO1+x. Obtained results were compared both with those published by us earlier, by Farhadi and Roostaei-Zaniyani later and also with the results published by Rejitha et al. quite recently. In contradiction to these last ones, in the first and second cases agreement between the results was obtained.  相似文献   

16.
Synthesis and Crystal Structures of NH4[Si(NH3)F5] and [Si(NH3)2F4] Single crystals of NH4[Si(NH3)F5] and [Si(NH3)2F4] are obtained by reaction of silicon powder with NH4HF2 in sealed Monel ampoules at 400°C. NH4[Si(NH3)F5] crystallizes with the tetragonal space group P4/n (no. 85) with a = 614.91(7) pm, c = 721.01(8) pm, Z = 2. Characteristic for the structure is the anionic octahedron [Si(NH3)F5]?. Si(NH3)2F4 crystallizes with the monoclinic space group P21/c (no. 14) with a = 506.9(1) pm, b = 728.0(1) pm, c = 675.9(1), β = 93,21(2)°, Z = 2. Trans-[Si(NH3)2F4] molecules are characteristic for this structure.  相似文献   

17.
The new octadecanuclear Cu‐Ln complex, [Cu12Nd6(OH)24(betaine)16(NO3)3(H2O)10](NO3)[PF6]14·5H2O, was synthesized, which crystallizes in triclinic P1¯ space group, a = 18.649(6)Å, b = 20.363(7)Å, c = 19.865(7)Å, α = 116.61(2)°, β = 91.99(2)°, γ = 117.93(2)°, V = 5666(3)Å3. Its crystal structure features a [Cu12Nd6(OH)24(betaine)16(NO3)3(H2O)10]15+ core of pseudocubic Oh symmetry, with the six Nd ions positioned at the vertices of a regular octahedron and the twelve Cu ions located at the midpoints of the twelve octahedral edges. The Cu‐Nd metal framework may be viewed as a cuboctahedron, which is interconnected by twenty‐four μ3‐OH bridges that are each linked to one Nd ion and two Cu ions. In the centre of metal polyhedron, there is an encapsulated NO3 anion that exhibits a multi‐ coordinating mode.  相似文献   

18.
Ammonolysis Reaction of (NH4)2GeF6. Synthesis and Structure of NH4[Ge(NH3)F5] (NH4)2GeF6 reacts with ammonia to yield NH4[Ge(NH3)F5] at 280°C. The reaction path was elucidated by in situ time and temperature resolved X-ray powder diffraction. NH4[Ge(NH3)F5] crystallizes isostructurally to NH4[Si(NH3)F5] in the tetragonal space group P4/n (No. 85) with lattice constants a = 619.41(1) pm and c = 724.70(1) pm. The germanium atom is coordinated by five fluorine atoms and the nitrogen atom of the ammonia molecule. The ammonium cation is located on the Wyckoff position (2 a) in P4/n. The crystal structure is stabilized by extensive hydrogen bonding.  相似文献   

19.
Crystalline NO2[Fe(NO3)4] was obtained by dehydration of a solution of Fe(NO3)3 in 100 % HNO3 and subsequent sublimation. NO2[Zr(NO3)5] was synthesized by reaction of ZrCl4 with N2O5 followed by sublimation in vacuum. X‐ray single crystal structure determination showed both compounds to consist of nitronium cations, NO2+, and nitratometalate anions. N‐O distances in the linear NO2+ cations are in the range of 1.08—1.13Å. In both [Fe(NO3)4] and [Zr(NO3)5] anions, all nitrate groups are coordinated bidentately with average M‐O distances 2.134 and 2.293Å, respectively. Taking into account the position of N atoms around the M atoms, the arrangement of nitrate groups can be described as tetrahedral for the Fe complex and trigonal‐bipyramidal for the Zr complex. There are four shortest N(nitronium)····O(nitrate group) contacts with average distances of 2.705 and 2.726Å in NO2[Fe(NO3)4] and 2.749Å in NO2[Zr(NO3)5]. Nitronium pentanitratohafnate is isotypic to the zirconium complex.  相似文献   

20.
Nd3NCl6 and Nd4NS3Cl3: Two Derivatives of Neodymium Nitride with Discrete Units of Edge‐Shared ([N2Nd6]12+) and Isolated [NNd4]9+ Tetrahedra, respectively For the preparation of Nd3NCl6 (orthorhombic, Pbca; a = 1049.71(8), b = 1106.83(8), c = 1621.1(1) pm; Z = 8) and Nd4NS3Cl3 (hexagonal, P63mc; a = 922.78(6), c = 683.06(4) pm; Z = 2) elemental neodymium is reacted with sodium azide (NaN3), neodymium trichloride (NdCl3) and in the case of Nd4NS3Cl3 additionally with sulfur in evacuated silica tubes at 750 °C (Nd3NCl6) and 850 °C (Nd4NS3Cl3), respectively. Thereby the hydrolysis‐sensitive nitride chloride forms coarse, brick‐shaped single crystals, while those of the insensitive nitride sulfide chloride emerge hexagonally and pillar‐shaped. The pale violet compounds each exhibit [NNd4] tetrahedra as characteristic structural features, which are connected via a common edge to form discrete pairs of tetrahedra ([N2Nd6]12+) in Nd3NCl6 and are present in Nd4NS3Cl3 even as isolated [NNd4]9+ units. Their three‐dimensional cross‐linkage as well as the charge‐balance regulation proceed solely through Cl anions in the nitride chloride, but through equimolar amounts of S2– and Cl anions in the nitride sulfide chloride. The crystal structure of Nd3NCl6 shows three crystallographically independent Nd3+ cations, each of which is eightfold coordinated by anions (Nd1: 2 N3– + 6 Cl; Nd2 and Nd3: 1 N3– + 7 Cl). Only two different kinds of Nd3+ underlie the structure of Nd4NS3Cl3: Nd1 is surrounded by one N3–, six S2– and three Cl with CN = 10, whereas one N3–, four S2– and three Cl only are coordinating Nd2 with CN = 8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号