首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Polymer modifications of ultrafine monodispersed colloidal metal oxide particles, smaller than 80 nm in diameter, by the graft-polymerization of styrene to a hydrophilic macromer adsorbed on the surface were investigated. The polymerization in ethanolic silica and titania colloid solution, which had negatively larger ζ-potentials, ?30 and ?42 mV in neutral aqueous solution respectively, gave poly(styrene)–silica or titania composite, being of nonspherical shape. The modifications of colloidal particles, having lower surface energy, such as Al(OH)3 and CeO2–TiO2–SiO2 complex, led to the formation of spherical composites, ranging in size from 500 to 3000 nm, of scattered metal oxide or hydroxide particles.  相似文献   

2.
Rigidity (G) of colloidal crystals in organic solvents of acetonitrile and nitrobenzene has been measured by reflection spectroscopy in sedimentation equilibrium. The colloidal spheres used are the silica spheres (136 nm in diameter) modified on their surfaces with polymers, poly(maleic anhydride-co-styrene) [P(MA-ST)], poly(methyl methacrylate) (PMMA), or polystyrene (PST). Log G increases linearly with the slope of unity as log N (number density of colloidal spheres) increases. The mean values of the b-factor, which is the fluctuation parameter in crystal lattices and should be smaller than 0.1 according to the Lindeman's rule, are 0.045±0.003, 0.039±0.007, and 0.038±0.003 for P(MA-ST)/SiO2, PMMA/SiO2, and PST/SiO2, respectively. These values are larger than that of colloidal crystals of mother silica spheres in the deionized aqueous suspension, 0.028. These results support the important role of the excluded volume effects from the polymer layers formed around the silica surfaces. However, contribution of the excluded volume effects from the electrical double layers formed around the spheres in the organic solvents is also effective in the colloidal crystallization. Electronic Publication  相似文献   

3.
 Polymer modification of monodispersed colloidal silica (0.5 μm) with poly(maleic anhydride-co-styrene) (P(MA-ST)) and poly (maleic anhydride-co-methyl methacrylate) (P(MA-MMA)) and application of the composite particles to biomaterial carriers were investigated. The reaction of bovine serum albumin(BSA)-immobilized P(MA-MMA)/SiO2 with the anti-BSA antibody showed higher sensitivity in immunological agglutination test than BSA–P(MA-ST)/SiO2, though immobilization efficiency of BSA on P(MA-MMA)/SiO2 was lower than that on P(MA-ST)/SiO2. Alkaline phosphatase and glucose oxidase immobilized on the composite particles exhibited extremely low activities, but α-chymotrypsin immobilized on P(MA-MMA)/SiO2 and its derivative particles showed the relative activity of 12.5% and 16.1% to the native enzyme, respectively. Grafting of a hydrophilic polymer of poly(acrylic acid) to P(MA-ST)/SiO2 let to an increase of the immobilized α-chymotrypsin activity to give the maximum relative activity of 55.5%. Received: 23 August 1996 Accepted: 16 October 1996  相似文献   

4.
A series of poly(propylene) silica‐grafted‐hyperbranched polyester nanocomposites by grafting the modified hyperbranched polyester (Boltorn? H20), possessing theoretically 50% end carboxylic groups and 50% end hydroxyl groups, which endcapped with octadecyl isocyanate (C19), onto the surface of SiO2 particles (30 nm) through 3‐glycidoxy‐propyltrimethoxysilane (GPTS) was prepared. The effect of silica‐grafted‐modified Boltorn? H20 on the mechanical properties of polypropylene (PP) was investigated by tensile and impact tests. The morphological structure of impact fracture surface and thermal behavior of the composites were determined by scanning electron microscopy (SEM) and differential scanning calorimetry (DSC), respectively. The melt viscosity of composites was investigated by melt flow index (MFI). The obtained results showed that: (1) the modified Boltorn? H20 was successfully grafted onto the SiO2 surface confirmed by FT‐IR and X‐ray photoelectron spectroscopy (XPS) analysis; (2) the incorporation of silica‐grafted‐modified Boltorn? H20 (3–5 wt% SiO2) greatly enhanced the notched impact strength as well the tensile strength of the composites; (3) the incorporation of silica‐grafted‐modified Boltorn? H20 had no influence on the melting temperature and crystallinity of PP phase; (4) the MFI of PP composites increased when the silica‐grafted‐modified Boltorn? H20 particles were added compared with PP/SiO2 or PP/SiO2‐GPTS composites. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Oscillations of the aggregate sizes of SiO2 particles covered by an adsorbed layer of poly(vinylpyridine) (PVP) at pH 3 with a periodicity of about 15 h were observed using a particle counting technique. The same oscillation was found for the contact angle values of water on the surface of Si wafers (with top silica layer) covered by adsorbed PVP as a function of exposure time in a PVP water solution.  相似文献   

6.
Herein, we report on the synthesis of film-forming poly(styrene-co-butyl acrylate-co-acrylic acid)/SiO2 [P(St-BA-AA)/SiO2] nanocomposites by in situ formation of SiO2 nanoparticles from TEOS via sol–gel process in the presence of poly(acrylic acid) (PAA)-functionalized poly(styrene-co-butyl acrylate) [P(St-BA)] particles fabricated by soap-free emulsion polymerization. The formed silica particles could be absorbed by polyacrylate chains on the surface of PAA-functionalized P(St-BA) particles; thus, raspberry-like polymer/silica nanocomposites would be obtained. Transmission electron microscopy, Fourier transform infrared spectroscopy, attenuated total reflectance infrared spectrum, ultraviolet–visible transmittance spectra, and thermogravimetric analysis were used to characterize the resulting composites. The results showed that the hybrid polymer/silica had a raspberry-like structure with silica nanoparticles anchored on the surface of polymer microspheres. The thermal, fire retardant, and mechanical properties and water resistance of the film were improved by incorporating silica nanoparticles, while the optical transmittance was seldom affected due to nanosized silica particles uniformly dispersed in the film.
Figure
Film-forming polymer/silica nanocomposites with raspberry-like morphology have been successfully prepared via soap-free emulsion polymerization followed by the sol–gel process. The number and the size of SiO2 particles coated on the surface of polymer particles can be adjusted by the amounts of TEOS and ammonia. After the film formation of polymer/silica nanocomposites, silica nanoparticles are homogeneously dispersed within the film without aggregation.  相似文献   

7.
Tri-layer magnetite/silica/poly(divinylbenzene) (Fe3O4/SiO2/PDVB) core-shell hybrid microspheres were prepared by distillation precipitation polymerization of divinylbenzene (DVB) in the presence of magnetite/3-(methacryloxyl)propyl trimethoxysilane (MPS) modified silica core-shell particles as seeds. The polymerization of DVB was performed in neat acetonitrile with 2,2′-azobisisobutyronitrile (AIBN) as initiator to coat magnetite/MPS-modified silica particles through the capture of DVB oligomers with the aid of vinyl groups on the surface of inorganic seeds in absence of any stabilizer or surfactant. Other magnetite/silica/polymer tri-layer hybrid particles, such as magnetite/silica/poly(ethyleneglycol dimethacrylate) (Fe3O4/SiO2/PEGDMA) and magnetite/silica/poly(ethyleneglycol dimethacrylate-co-methacrylic acid) (Fe3O4/SiO2/P(EGDMA-co-MAA)) with various polarity and functionality, were also prepared by this procedure. Magnetite/silica/poly(N,N′-methylenebisacrylamide-co-methacrylic acid) (Fe3O4/SiO2/P(MBAAm-co-MAA)) were synthesized with unmodified magnetite/silica particles as seeds. The resultant tri-layer hybrid particles were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectra (FT-IR), dynamic light scattering, and vibrating sample magnetometer (VSM).  相似文献   

8.
以常压有机溶剂置换(A)和溶剂置换-表面改性(B)方式制备的两种SiO2气凝胶(SiO2-A(或B)型气凝胶,记为SiO2-A(or B)G)为载体, 采用常规浸渍法和聚乙烯吡咯烷酮(PVP)添加浸渍法合成不同SiO2气凝胶负载的Ni/SiO2催化剂, 并考察其催化的甲烷部分氧化(POM)制合成气的反应性能. 结果表明, 各催化剂的初始反应性能相近, 但Ni/SiO2-BG的POM稳定性明显较Ni/SiO2-AG的差, 而PVP添加制备的催化剂稳定性则获明显改善, Ni/SiO2-AG-PVP、Ni/SiO2-BG-PVP上POM稳定性相近. 结合X射线衍射(XRD)、程序升温还原反应(H2-TPR)、高分辨透射电镜(TEM)和Brunauer-Emmett-Teller (BET)等表征结果的分析发现: (1) SiO2-AG表面上存在一定量的羟基, 可促进亲水性金属物种与其的相互作用, 而SiO2-BG表面上基本为有机基团, 与亲水性金属物种几乎无作用; (2) PVP的存在可使金属物种进入亲/疏水载体孔道深处, 抑制焙烧中载体骨架的收缩和金属颗粒的生长, 进而促进金属-载体的相互作用. 这二者均能有效地提高催化剂的POM反应稳定性.  相似文献   

9.
Coatings were prepared by mixing MeTMS and an aqueous colloidal silica. Mixing of an MeTMS hydrolysis mixture with the aqueous colloidal silica is only possible, without flocculation of the colloidal silica particles, within a certain time window. 29Si NMR was used to follow the hydrolysis/condensation reactions of MeTMS, whereas 1H NMR was used to monitor the reaction of the MeTMS monomers and oligomers with the silica surface in the coating liquid. The reaction of MeTMS with the surface of the SiO2 particles is determined by the oligomer size. Typical SiO2 surface coverage is less than 3 molecules/nm2 (approximately one monolayer). Large MeTMS oligomers and/or cyclic species do not react with the SiO2 surface. These species are probably too apolar to react or absorb at the SiO2 surface. Flocculation of the aqueous colloidal silica occurs due to the low polarity of the hydrolysis mixture. The water content and the degree of condensation of the MeTMS determine the width of the time window.  相似文献   

10.
A novel synthetic route to prepare polystyrene/SiO2 composite microparticles in supercritical carbon dioxide (scCO2) is presented. Silica particles with the size of 130 nm which were surface-modified with 3-(trimethoxysilyl) propyl methacrylate were used as seeds in the dispersion polymerization of styrene in the presence of a polymeric stabilizer, poly(1,1-dihydroheptafluorobutyl methacrylate-co-diisopropylaminoethyl methacrylate) to produce dry composite particles. The transmission electron microscopy analysis revealed that the composite microspheres contained several silica particles.  相似文献   

11.
Mesoporous silica particles were grafted with thermoresponsive poly(ethyleneoxide‐b‐N‐vinylcaprolactam), PEO‐b‐PVCL. N‐vinylcaprolactam was first polymerized on particle surfaces using surface initiated atom transfer radical polymerization (SI‐ATRP) and then, the poly(ethyleneoxide) blocks were attached to the PVCL chain ends with click chemistry. The sizes, thermoresponsiviness, and colloidal stability of SiO2‐PVCL and SiO2‐PVCL‐b‐PEO particles and their aqueous dispersions were studied by scanning electron microscopy, turbidimetry, dynamic light scattering, zeta sizer, and microcalorimetry. The phase separation temperature of the PEO‐b‐PVCL grafted particles did not considerably differ from that of the SiO2‐PVCL particles. The zeta potential of the grafted particles was close to zero at room temperature but decreased strongly upon heating. The decrease is related to the collapse of the PVCL blocks and correspondingly, the exposure of the silica surface toward the aqueous phase. The colloidal stability of the particles could be enhanced by adding PEO blocks to the chain ends of the PVCL grafts. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 5012–5020  相似文献   

12.
Acetylcellulose (AC)/silica and polyvinylpyrrolidone (PVP)/silica composites were prepared by the sol–gel method from Si(OCH3)4-AC-HNO3-H2O-tetrahydrofuran-CH3OC2H4OH and Si(OCH3)4-PVP-(CH3COOH or NH3)-H2O-CH3OH-CH3OC2H4OH solutions. AC/silica composites were composed of micrometer-sized particles rich in silica and a matrix rich in AC, while PVP/silica composites were single-phase on the SEM length scale. The AC/silica composites exhibited elastic-plastic behavior, and had excellent machinability without chipping on cutting with an electric saw while the PVP/silica composites showed less plasticity and machinability. Youngs modulus and bending strength were increased by post-drying, 1.8–2.8 GPa and 49–88 MPa, respectively, for the AC/silica composites, and 1.0–3.9 GPa and 17–79 MPa, respectively, for the PVP/silica composites.  相似文献   

13.
In a previous paper [Pich A, Lu Y, Adler H-J (2003) Colloid Polym Sci (submitted)], the synthesis of polystyrene-poly(ethylene glycol) methacrylate (PST/PEGMA) particles has been described. In the present paper polymeric particles have been prepared by emulsion co-polymerization of styrene/N-vinylcaprolactam (ST/VCL) or styrene/n-butylacrylate (ST/BA) mixtures in presence of poly(ethylene glycol) methacrylate (PEGMA). The influence of the monomer composition and PEGMA concentration on the particle size and particle size distribution was studied. Increase of VCL content in reaction mixture leads to dramatic increase of the final particle size. Particle size distribution becomes broader at higher VCL contents. Poly(ST/VCL) particles show dramatic change of the size with the temperature.  相似文献   

14.
The objective of this article is to fabricate poly(lactic acid) (PLA) and nano silica (SiO2) composites and investigate effect of SiO2 on the properties of PLA composites. Surface‐grafting modification was used in this study by grafting 3‐Glycidoxypropyltrimethoxysilane (KH‐560) onto the surface of silica nanoparticles. The surface‐grafting reaction was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Then the hydrophilic silica nanoparticles became hydrophobic and dispersed homogeneously in PLA matrix. Scanning electron microscope and Dynamic thermomechanical analysis (DMA) results revealed that the compatibility between PLA and SiO2 was improved. Differential scanning calorimetry and polarized optical microscope tests showed that nano‐silica had a good effect on crystallization of PLA. The transparency analysis showed an increase in transparency of PLA, which had great benefit for the application of PLA. The thermal stability, fire resistance, and mechanical properties were also enhanced because of the addition of nano silica particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
In this article, a solid mechanochemical route to prepare core‐shell structured particles was introduced. X‐ray photoelectron spectrum, transmission electron microscope and dissolving experimental results indicated the formation of [(inorganic particle)/(elastomer)] core‐shell structured particles. The thermal stable experiments showed that untreated SiO2 can cause dehydrochlorination of poly(vinyl chloride) (PVC) and discoloration of PVC/SiO2 composites and the formation of core‐shell structured SiO2 particles will improve the thermal stability of PVC/SiO2 composites. The mechanical properties and rheological results showed that the formation of core‐shell structured SiO2 particles can both improve the mechanical and processing properties of PVC/SiO2 composite. ACR in PVC/(SiO2‐PMMA‐ACR) composites acted not only as toughener for PVC matrix but also as cushion breaker if the content of ACR is enough. Meanwhile compared with other SiO2 particles the formation of core‐shell structured SiO2 particles can decrease the apparent viscosity, increase the critical shear rate and improve the appearance of extrudes of PVC/SiO2 composites. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 938–948, 2008  相似文献   

16.
The reaction of monodispersed silica colloid with hydrophobic and hydrophilic polymer coupling agents in the presence of ammonia afforded dispersible polymer/SiO2 composites into organic solvents without aggregation.  相似文献   

17.
IntroductionIn the past two decades, because of its potentialindustrial applications, organic-inorganic compositeshave attracted the attention of both researchers andacademicians. Organic-inorganic hybrids offer the pos-sibility to combine both the advant…  相似文献   

18.
Summary: Supported catalyst system for the slurry phase polymerization of styrene in toluene was prepared by the immobilization of 2-methylindenyltrichlorotitanium(2-MeIndTiCl3) on silica and activation of this catalyst was performed by methylaluminoxane(MAO) in polymerization media. Homogeneous polymerization of styrene with 2-methylindenyltrichlorotitanium activated by MAO was performed in toluene. The morphology of obtained syndiotactic polystyrene (sPS) via heterogeneous and homhgeneous catalyst system was compared. Polymerization of styrene by homogeneous catalyst lead to formation of gel and resultant polymers presented a compact and dense texture while the global gelation do not occur with silica supported catalyst at different Ti/SiO2 mol ratios and sPS was obtained as separated particles. Unlike to the homogeneous catalyst, obtained polymers showed a porous texture. Highly porous texture of sPS was obtained with Ti/SiO2 = 0.5% mol ratio.  相似文献   

19.
Regularities of dissolution of colloidal SiO2 particles in the formation of concentrated polysilicate solutions from stabilized silica sols are studied. It is shown by nephelometry, IR spectroscopy, and titration analysis that the initial structure of polysilicate solutions prepared from the sols containing compact waterless colloidal SiO2 particles is destroyed with time: particles are dissolved, and soluble silica species are accumulated. Viscosity of solutions increases with time, and gels are formed at a certain stage. In polysilicates with a large specific surface area and high particle activity, most of the silica is transferred into a solution before the gelation; dissolution slowly proceeds also at later stages. Probably, the resultant system does not contain SiO2 particles.  相似文献   

20.
Structures of silica particles on a titania surface and titania particles on a silica surface were formed by deposition of SiO2 or TiO2 nanoparticles on pre-patterned substrates. Photolithography was used to create a matrix for the selective deposition of nanoparticles by immersion in a colloidal suspension. Atomic force microscopy was used to investigate the topography of these inorganic assemblies. Whereas two-dimensional colloidal patches of TiO2 nanoparticles are obtained on silica surfaces, SiO2 nanoparticles form three-dimensional, U-shaped channels on titania surfaces.The influence of electrostatic forces on assembly structure is vital. The isoelectric points of the particles, the pre-patterned matrix and the photo-resist are key parameters and may be manipulated to achieve various microstructures. The 2D nanoparticle arrays of titania on silica and 3D channels (built of silica nanoparticles) on flat titania surfaces are of potential interest in lab-on-a-chip applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号