首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The ozonolysis of (+)‐longifolene ( 1 ) in different solvents (Et2O, CH2Cl2, CHCl3, acetone) at ?80° provided quantitatively longifolene epoxide ( 3 ) as a single diastereoisomer in which the O‐atom is endo‐positioned (Scheme 2). Upon warming to room temperature, the epoxide remained stable only in acetone and was isolated as a low‐melting crystalline compound. In CH2Cl2, Et2O, or CHCl3 solution, epoxide 3 rapidly rearranged to the isomeric enols 4 and 5 , which underwent further rearrangement to give the exo‐aldehyde 6 . On standing for several weeks in CH2Cl2 solution, or in CHCl3 and Et2O as well, at room temperature, aldehyde 6 slowly rearranged into its epimer 7 . The aldehydes 6 and 7 were isolated on the preparative scale for further synthetic use. The addition of methylmagnesium iodide to 6 and 7 provided the corresponding alcohols 13 / 14 and 15 / 16 , respectively, which were isolated as pure diastereoisomers (Scheme 4). The configurations of the new chiral centers in 13 – 16 were determined by NMR methods and X‐ray crystallography.  相似文献   

2.
The reaction of 1,4,5‐trisubstituted 1H‐imidazole 3‐oxides 1 with Ac2O in CH2Cl2 at 0 – 5° leads to the corresponding 1,3‐dihydro‐2H‐imidazol‐2‐ones 4 in good yields. In refluxing Ac2O, the N‐oxides 1 are transformed to N‐acetylated 1,3‐dihydro‐2H‐imidazol‐2‐ones 5 . The proposed mechanisms for these reactions are analogous to those for N‐oxides of 6‐membered heterocycles (Scheme 2). A smooth synthesis of 1H‐imidazole‐2‐carbonitriles 2 starting with 1 is achieved by treatment with trimethylsilanecarbonitrile (Me3SiCN) in CH2Cl2 at 0 – 5° (Scheme 3).  相似文献   

3.
The title reaction has been applied to 10 monosubstituted p-benzoquinones (Scheme 2, Table). The regioselectively of the O-phosphorylation is influenced by bulky substituents (t-butyl and trimethylsilyl) and, electronically, by the methoxy group. The regioselectivity, which is high in nonpolar media (benzene), is lower in polar solvents (CH2Cl2) and (CH3CN). The synthetic potential of this transformation, exemplified by the preparation of compounds 29 (Scheme 3) and 32 (Scheme 4), is considerably extended by applying milder methods for the phosphate hydrolysis and by using the reagent couple P(OCH3)3/trimethylsilyl chloride, which gives clean access to p-hydroxyphenyl phosphates. p-Benzoquinones 4th and 4i with strong π-acceptor substituents react in a different way, giving phosphonates. The electronically induced regioselectivity of the O-phosphorylation is in according with the preferences expected for the attack by a nucleophilic phosphorylation agent.  相似文献   

4.
Xiaojun Han 《Tetrahedron letters》2007,48(16):2845-2849
A practical and expedient synthesis of the titled compounds is described. Using the same simple procedure (DBU was reacted with the mixture of an alkynol and a nitrogen heterocycle in CH2Cl2 at rt for 16 h), a wide variety of diverse NH-containing nucleophiles such as pyrazoles, indazoles, indoles, imidazoles and benzoimidazole, oxazolidinone and benzooxazolone, triazoles, phthalimides, and N-formyl anilines, have been reacted with 4-aryl-4-hydroxy-alkynyl esters to afford good yields of desired products. This reaction proceeded by the DBU catalyzed redox isomerization of ethyl 4-aryl-4-hydroxybut-2-ynoate to (E)-ethyl 4-aryl-4-oxobut-2-enoate, followed by the DBU catalyzed aza-Michael reactions with the isomerized product in one-pot.  相似文献   

5.
Iodine-catalyzed reactions of bis(1-hydroperoxycycloalkyl) peroxides with ketals give, via replacement of two alkoxy groups, the cyclic peroxides, 1,2,4,5,7,8-hexaoxonanes, in up to 82% yields. The cyclization is very sensitive to the solvent nature. Among MeCN, Et2O, THF, CHCl3, CH2Cl2, hexane, and MeOH, the best results were achieved with the first three solvents.  相似文献   

6.
The smooth reaction of 3‐chloro‐3‐(chlorosulfanyl)‐2,2,4,4‐tetramethylcyclobutanone ( 3 ) with 3,4,5‐trisubstituted 2,3‐dihydro‐1H‐imidazole‐2‐thiones 8 and 2‐thiouracil ( 10 ) in CH2Cl2/Et3N at room temperature yielded the corresponding disulfanes 9 and 11 (Scheme 2), respectively, via a nucleophilic substitution of Cl? of the sulfanyl chloride by the S‐atom of the heterocyclic thione. The analogous reaction of 3‐cyclohexyl‐2,3‐dihydro‐4,5‐diphenyl‐1H‐imidazole‐2‐thione ( 8b ) and 10 with the chlorodisulfanyl derivative 16 led to the corresponding trisulfanes 17 and 18 (Scheme 4), respectively. On the other hand, the reaction of 3 and 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazole‐5(4H)‐thione ( 12 ) in CH2Cl2 gave only 4,4‐dimethyl‐2‐phenyl‐1,3‐thiazol‐5(4H)‐one ( 13 ) and the trithioorthoester derivative 14 , a bis‐disulfane, in low yield (Scheme 3). At ?78°, only bis(1‐chloro‐2,2,4,4‐tetramethyl‐3‐oxocyclobutyl)polysulfanes 15 were formed. Even at ?78°, a 1 : 2 mixture of 12 and 16 in CH2Cl2 reacted to give 13 and the symmetrical pentasulfane 19 in good yield (Scheme 5). The structures of 11, 14, 17 , and 18 have been established by X‐ray crystallography.  相似文献   

7.
The synthesis of Cl2Pt[NH2(CH2)nCOOH]2 (n = 5, 10) and the reactions of their carboxylic groups with H2N(CH2)17CH3, d ‐glucosamine, and (R,R)‐1,2‐diaminocyclohexane to give complexes with amino acid amides as ligands, are reported. Cl2Pd(histidine) is coupled with amino alcohols to give Cl2Pd(histidineamide) complexes.  相似文献   

8.
The abstraction of the halogenide ligands in [Re(CH3CN)2Cl4]? should result in a solvent‐only stabilized ReIII complex. The reactions of salts of [Re(CH3CN)2Cl4]? with silver(I) and thallium(I) salts were investigated and the solid‐state structures of cis‐[Re(CH3CN)2Cl4]·CH3CN and cis‐[Re(NHC(OCH3)CH3)2Cl4] are described.  相似文献   

9.
The three different perfluoroalkyl‐tagged bis(dihydrooxazole)copper complexes 19 – 21 were synthesized and immobilized noncovalently on fluorous reversed‐phase silica gel (FRPSG) by fluorous? fluorous interactions (Schemes 2 and 3). These supported catalysts were successfully applied to asymmetric Diels? Alder reactions in H2O and in CH2Cl2 (Scheme 4). Besides high conversion of the dienophile, we observed enantiomer excesses of up to 88% in H2O and 97% in CH2Cl2, and we were able to recover and re‐use these catalytic systems several times. Despite the relatively high catalyst loading, the leaching of copper was remarkably low ranging from 2.4 to 5.9 ppm.  相似文献   

10.
1,8‐Diazabicyclo[5.4.0]undec‐7‐ene (DBU) reacted with benzyl halides in CH2Cl2/H2O 1 : 1 (v/v) to afford a mixture of eleven‐membered cyclic amide 1 and seven‐membered cyclic amide 2 . When the reaction was carried out in EtOH/H2O 1 : 1 (v/v), product 2 was obtained as the major product. 1,5‐Diazabicyclo[4.3.0]non‐5‐ene (DBN) gave the five‐membered cyclic amide 3 as the sole product under the same reaction conditions.  相似文献   

11.
Nucleophilic aromatic substitution (SNAr) reactions are exploited to prepare poly(arylene sulfide)s (PAS's) via the reaction of bis-thiolates and dibrominated pyromellitic diimide (PMDI) derivatives. Small-molecule model studies reveal the reaction is well-defined and proceeds in quantitative yield in practical times at room temperature. Variation in comonomer feed ratios allowed some control over target polymer molecular weights in the step polymerization, but control was likely limited by the relatively poor polymer solubility in the dipolar aprotic solvents typically employed to promote SNAr reactions. One substitution pattern produces a steric “pocket” around the PMDI units, inducing a peculiar solubility trend in halogenated solvents; that is, greatly reduced solubility in CHCl3 relative to CH2Cl2 and C2H2Cl4. One example small-molecule readily dissolves in CHCl3 at room temperature, then rapidly grows poorly soluble crystals revealed by single-crystal XRD to contain CHCl3 molecules in the steric pockets. Finally, the recently demonstrated depolymerization of phthalonitrile-based PAS's via ipso substitution with monothiolates as chain scission agents yields quantitative molecular weight reduction to monomeric species from the polymers reported here.  相似文献   

12.
Alkylation reactions of nickel(II) complex 6 derived from glycine and 2‐[(1‐benzyl‐L ‐prolyl)amino]benzophenone (BPBP) were studied under phase‐transfer‐catalysis (PTC) conditions. The goal of this work was to find an alternative suitable solvent for these reactions to replace the commonly used CH2Cl2 which leads to the formation of several by‐products, thus lowering the yield of target compounds. We demonstrate that 1,2‐dichloroethane is a markedly better solvent providing higher yields (75–99%) of the desired products 10 with 36–88% diastereoisomer purity (Scheme 3 and Table). Furthermore, we show that the stereochemical outcome of these PTC reactions (kinetic control) can be easily improved to >95% de by treatment of the PTC products with MeONa/MeOH. The scope of these reactions includes alkylations with methyl iodide as well as activated halides such as benzyl, allyl or propargyl, bromides and most notably ethyl 2‐bromoacetate (Table).  相似文献   

13.
The reactions of AuIII, PtII and PdII complexes with 2-pyridinecarboxaldehyde (2CHO-py) have been examined in protic (H2O, MeOH, EtOH) and aprotic (DMF, CH2Cl2) solvents. Compounds in which the pyridine ligand is N-coordinated, either in the original aldehydic form or in a new form derived from addition of one or two protic molecules, have been isolated, namely: [Au(2CHO-py · H2O)Cl3], [Au(2CHO-py · MeOH)Cl3], [Au(2CHO-py · 2EtOH)Cl3], cis-[Pt(2CHO-py)2Cl2], trans-[Pd(2CHO-py)2Cl2], trans-[Pt(dmso)(2CHO-py)Cl2], [Pt{C5H4N-(CH2SMe)}Cl(2CHO-py)](ClO4), [Pt(terpy)(2CHOpy)](ClO4)2, [Pt(terpy)(2CHO-py · H2O)](ClO4)2 (terpy = 2,2′:6′,2′′-terpyridine). 1H-n.m.r. experiments show that the addition of the protic molecule(s) to the PtII and PdII complexes is reversible. The effects of the nature of the metal ion and the ancillary ligands as well as of the total charge of the complexes on the relative stability of the addition products are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The Cl atom-initiated oxidation of CH2Cl2 and CH3Cl was studied using the FTIR method in the photolysis of mixtures typically containing Cl2 and the chlorinated methanes at 1 torr each in 700 torr air. The results obtained from product analysis were in general agreement with those reported by Sanhueza and Heicklen. The relative rate constant for the Cl atom reactions of CH2Cl2 and CH3Cl was determined to be k(Cl +CH3Cl)/k(Cl + CH2Cl2) = 1.31 ± 0.14 (2σ) at 298 ± 2 K.  相似文献   

15.
A novel, efficient one‐pot approach for the synthesis of furopyrimidine and oxobenzofuran derivatives 4 by a multicomponent reaction of an isocyanide, an aldehyde, and a CH‐acid compound in CH2Cl2 is reported (Scheme 1 and Table). The reactions were completed after 20 h at room temperature. This method has the advantages of high yields, simple methodology, and easy workup.  相似文献   

16.
To demonstrate the relevance of the kinetic acidity of individual OH groups for the regioselectivity of glycosylation by glycosylidene carbenes, we compared the glycosylation by 1 of the known triol 2 with the glycosylation of the diol D - 3 and the fluorodiol L - 4 . Deoxygenation with Bu3SnH of the phenoxythiocarbonyl derivative of 5 (Scheme 1) or the carbonothioate 6 gave the racemic alcohol (±)- 7 . The enantiomers were separated via the allophanates 9a and 9b , and desilylated to the deoxydiols D - and L - 3 , respectively. The assignment of their absolute configuration is based upon the CD spectra of the bis(4-bromobenzoates) D - and L - 10 . The (+)-(R)-1-phenylethylcarbamates 13a and 13b (Scheme 2) were prepared from the fluoroinositol (±)- 11 via (±)- 4 and the silyl ether (±)- 12 and separated by chromatography. The absolute configuration of 13a was established by X-ray analysis. Decarbamoylation of 13a ( → L - 12 ) and desilylation afforded the fluorodiol L - 4 . The H-bonds of D - 3 and L - 4 in chlorinated solvents and in dioxane were studied by IR and 1H-NMR spectroscopy (Fig. 2). In both diols, HO? C(2) forms an intramolecular, bifurcated H-bond. There is an intramolecular H-bond between HO? C(6) and F in solutions of L - 4 in CH2Cl2, but not in 1,4-dioxane; the solubility of L - 4 in CH2Cl2 is too low to permit a meaningful glycosidation in this solvent. Glycosidation of D - 3 in dioxane by the carbene derived from 1 (Scheme 3) followed by acetylation gave predominantly the pseudodisaccharides 18/19 (38%), derived from glycosidation of the axial OH group besides the pseudodisaccharides 16 / 17 (13%) and the epoxides 20 / 21 (7%), derived from protonation of the carbene by the equatorial OH group. Similarly, the reaction of L - 4 with 1 (Scheme 4) led to the pseudodisaccharides 28 / 29 (46%) and 26 / 27 (14%), derived from deprotonation of the axial and equatorial OH groups, respectively. Formation of the epoxides involved deprotonation of the intramolecularly H-bonded tautomer, followed by intramolecular alkylation, elimination, and substitution (Scheme 4). The regio- and diastereoselectivities of the glycosidation correlate with the H-bonds in the starting diols.  相似文献   

17.
Four mixed-halide cluster salts with chloride-iodide-supported octahedral Nb6 metal atoms cores were prepared and investigated. The cluster anions have the formula [Nb6Cli12Ia6]n with Cl occupying the inner ligand sites and I the outer one. They are one- or two-electron-oxidized (n=2 or 3) with respect to the starting material cluster. (Ph4P)+ and (PPN)+ function as counter cations. The X-ray structures reveal a mixed occupation of the outer sites for only one compound, (PPN)3[Nb6Cli12Ia5.047(9)Cla0.953]. All four compounds are obtained in high yield. If in the chemical reactions a mixture of acetic anhydride, CH2Cl2, and trimethylsilyl iodide is used, the resulting acidic conditions lead to form the two-electron-oxidised species (n=2) with 14 cluster-based electrons (CBEs). If only acetic anhydride is used, the 15 CBE species (n=3) is obtained in high yield. Interesting intermolecular bonding is found in (Ph4P)2[Nb6Cli12Ia6] ⋅ 4CH2Cl2 with I⋅⋅⋅I halogen bonding and π-π bonding interactions between the phenyl rings of the cations in (PPN)3[Nb6Cli12Ia5.047(9)Cla0.953]. The solubility of (Ph4P)2[Nb6Cli12Ia6] ⋅ 4CH2Cl2 has been determined qualitatively in a variety of solvents, and good solubility in the aprotic solvents CH3CN, THF and CH2Cl2 has been found.  相似文献   

18.
The dehydrogenation reaction of the heptalene-4,5-dimethanols 4a and 4d , which do not undergo the double-bond-shift (DBS) process at ambient temperature, with basic MnO2 in CH2Cl2 at room temperature, leads to the formation of the corresponding heptaleno[1,2-c]furans 6a and 6d , respectively, as well as to the corresponding heptaleno[1,2-c]furan-3-ones 7a and 7d , respectively (cf. Scheme 2 and 8). The formation of both product types necessarily involves a DBS process (cf. Scheme 7). The dehydrogenation reaction of the DBS isomer of 4a , i.e., 5a , with MnO2 in CH2Cl2 at room temperature results, in addition to 6a and 7a , in the formation of the heptaleno[1,2-c]-furan-1-one 8a and, in small amounts, of the heptalene-4,5-dicarbaldehyde 9a (cf. Scheme 3). The benzo[a]heptalene-6,7-dimethanol 4c with a fixed position of the C?C bonds of the heptalene skeleton, on dehydrogenation with MnO2 in CH2Cl2, gives only the corresponding furanone 11b (Scheme 4). By [2H2]-labelling of the methanol function at C(7), it could be shown that the furanone formation takes place at the stage of the corresponding lactol [3-2H2]- 15b (cf. Scheme 6). Heptalene-1,2-dimethanols 4c and 4e , which are, at room temperature, in thermal equilibrium with their corresponding DBS forms 5c and 5e , respectively, are dehydrogenated by MnO2 in CH2Cl2 to give the corresponding heptaleno[1,2-c]furans 6c and 6e as well as the heptaleno[1,2-c]furan-3-ones 7c and 7e and, again, in small amounts, the heptaleno[1,2-c]furan-1-ones 8c and 8e , respectively (cf. Scheme 8). Therefore, it seems that the heptalene-1,2-dimethanols are responsible for the formation of the furan-1-ones (cf. Scheme 7). The methylenation of the furan-3-ones 7a and 7e with Tebbe's reagent leads to the formation of the 3-methyl-substituted heptaleno[1,2-c]furans 23a and 23e , respectively (cf. Scheme 9). The heptaleno[1,2-c]furans 6a, 6d , and 23a can be resolved into their antipodes on a Chiralcel OD column. The (P)-configuration is assigned to the heptaleno[1,2-c]furans showing a negative Cotton effect at ca. 320 nm in the CD spectrum in hexane (cf. Figs. 3–5 as well as Table 7). The (P)-configuration of (–)- 6a is correlated with the established (P)-configuration of the dimethanol (–)- 5a via dehydrogenation with MnO2. The degree of twisting of the heptalene skeleton of 6 and 23 is determined by the Me-substitution pattern (cf. Table 9). The larger the heptalene gauche torsion angles are, the more hypsochromically shifted is the heptalene absorption band above 300 nm (cf. Table 7 and 8, as well as Figs. 6–9).  相似文献   

19.
It is shown that carboxylic acids, in the presence of Bu3N and 2-chloro-1-methylpyridinium iodide in toluene or CH2Cl2, react with [(alkoxycarbonyl)methylidene]phosphoranes to yield the corresponding esters of allene carboxylic acids (ef. Scheme 1 and Table 1). This procedure can also be applied to cinnamic acids which form [3]cumulenecarboxylates in low yield (Table 3). Under the same conditions 4-methyl-2-pentynoic acid can be transformed into (2E)-4-chloro-2,6-dimethylhepta-2,4,5-trienoate (Scheme 4).  相似文献   

20.
A kinetic study of Hg(II) ions transport through a bulk liquid membrane (BLM) was investigated. The commercially available liquid bis(2,4,4‐trimethyl(pentyl) dithiophosphinic acid) (Cyanex 301) was employed as mobile carrier. The influences of the carrier concentration in the liquid membrane, HNO3 concentration in the feed phase, type of organic solvent, composition of the receiving phase, and stirring speed on mass transfer were studied. Various solvents including CH2Cl2, CHCl3, C2H4Cl2 and CCl4 were used as organic membrane. Among the solvents, CHCl3 provided the superior results. The kinetic parameters (k1, k2, Rmmax, tmax, Jdmax, and Jamax) were calculated for the interface reaction assuming two consecutive, irreversible first‐order reactions. The analysis of Hg(II) accumulation in liquid membrane and the rate‐controlling step under different experimental conditions were elucidated. The experiments demonstrated that Cyanex 301 is an appropriate carrier for Hg(II) transport through liquid membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号