首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Crystal Structures of (NH4)2[ReCl6], [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN and [ReCl4(18)(Crown-6)] Brown single crystals of (NH4)2[ReCl6] are formed by the reaction of NH4Cl with ReCl5 in a suspension of diethylether. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN crystallizes as brown crystal plates from a solution of ReCl5 in acetonitrile. Lustrous green single crystals of [ReCl4(18-crown-6)] are obtained by the reaction of 18-crown-6 with ReCl5 in a dichloromethane suspension. All rhenium compounds are characterized by IR spectroscopy and by crystal structure determinations. (NH4)2[ReCl6]: Space group Fm3 m, Z = 4, 75 observed unique reflections, R = 0.01. Lattice constant at ?70°C: a = 989.0(1) pm. The compound crystallizes in the (NH4)2[PtCl6] type, the Re? Cl distance is 235.5(1) pm. [ReCl2(CH3CN)4]2[ReCl6] · 2CH3CN: Space group P1, Z = 1, 2459 observed unique reflections, R = 0.12. Lattice dimensions at ?60°C: a = 859.0(1), b = 974.2(7), c = 1287.3(7) pm, α = 102.69(5)°, b? = 105.24(7)°, γ = 102.25(8)°. The structure consists of two symmetry-independent [ReCl2(CH3CN)4]+ ions with trans chlorine atoms, [ReCl6]2? ions, and included acetonitrile molecules. In the cations the Re? Cl bond lengths are 233 pm in average, in the anion they are 235 pm in average. [ReCl4(18-crown-6)]: Space group P21/n, Z = 4, 3 633 observed unique reflections, R = 0.06. Lattice dimensions at ?70°C: a = 1040.2(4), b = 1794.7(5), c = 1090.0(5) pm, b? = 108.91(4)°. The compound forms a molecular structure, in which the rhenium atom is octahedrally coordinated by the four chlorine atoms and by two oxygen atoms of the crown ether molecule.  相似文献   

2.
Phosphoraneiminato Complexes of Vanadium. The Crystal Structure of [V3Cl6(NPMe3)5+]2[V4O4Cl8(NPMe3)22?] · 6 CH3CN Vanadiumtetrachloride reacts in CCl4 solution with Me3SiNPMe3 to form the donor acceptor complex [VCl4(Me3SiNPMe3)], which reacts with excess Me3SiNPMe3 in boiling acetonitrile to form the phosphoraneiminato complex [V3Cl6(NPMe3)5]+Cl?. Partial hydrolysis in acetonitrile solution leads to black single crystals of [V3Cl6(NPMe3)5+]2[V4O4Cl8(NPMe3)22?] · 6 CH3CN, which are characterized by a crystal structure determination. Space group P21/c, Z = 2, structure solution with 3 008 observed unique reflections, R = 0.090. Lattice dimensions at ?70°C: a = 1 379.0, b = 1 915.8, c = 2 278 pm, β = 102,79°. In the complex cation the three vanadium atoms form a trigonal bipyramid with two μ3-NPMe3 groups; the residual NPMe3? groups and the chlorine atoms are in terminal functions. In the anion [V4O4Cl8(NPMe3)2]2? the vanadium atoms are linked by μ2-O atoms to form a rectangle; in addition the two phosphoraneiminato ligands form μ2-N bridges.  相似文献   

3.
Phosphorane Iminato Complexes of Antimony. The Crystal Structures of [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN and [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN The title compounds are formed by reaction of antimony pentachloride in acetonitrile solution with the phosphorane iminato complexes SbCl2(NPMe3) and SbCl2(NPPh3), respectively, which themselves are synthesized by reaction of antimony trichloride with Me3SiNPR3 (R = Me, Ph). The complexionic compounds are characterized by 121Sb Mössbauer spectroscopy and by crystal structure determinations. [Sb2Cl5(NPMe3)2][SbCl6] · CH3CN: Space group P41, Z = 4, 3 698 observed unique reflections, R = 0.022. Lattice dimensions at ?60°C: a = b = 1 056.0(1), c = 2 709.6(2) pm. The structure consists of SbCl6? ions and cations [Sb2Cl5(NPMe3)2(CH3CN)]+, in which one SbIII atom and one SbV atom are bridged by the N atoms of the phosphorane iminato ligands. [SbCl(NPPh3)]2[SbCl6]2 · 6 CH3CN: Space group P1 , Z = 2, 5 958 observed unique reflections, R = 0.033. Lattice dimensions at ?60°C: a = 989.4(11), b = 1 273(1), c = 1 396(1) pm, α = 78.33(7), β = 77.27(8)°, γ = 86.62(8)°. The structure consists of SbCl6? ions and centrosymmetric cations [SbCl(NPPh3)(CH3CN)2]22+, in which the antimony atoms are bridged by the N atoms of the phosphorane iminato ligands.  相似文献   

4.
The abstraction of the halogenide ligands in [Re(CH3CN)2Cl4]? should result in a solvent‐only stabilized ReIII complex. The reactions of salts of [Re(CH3CN)2Cl4]? with silver(I) and thallium(I) salts were investigated and the solid‐state structures of cis‐[Re(CH3CN)2Cl4]·CH3CN and cis‐[Re(NHC(OCH3)CH3)2Cl4] are described.  相似文献   

5.
The Chlorooxoarsenates(III) (PPh4)2[As4O2Cl10] · 2 CH3CN and (PPh4)2[As2OCl6] · 3 CH3CN (PPh4)2[As2Cl8] can be prepared from As2O3, SOCl2 and PPh4Cl in acetonitrile. Its oxidation with chlorine yields PPh4[AsCl6]. This was also obtained directly from arsenic, chlorine and PPh4Cl, (PPh4)2[As4O2Cl10] · 2 CH3CN being a side product; the latter was obtained with high yield from AsCl3, As2O3 and PPh4Cl in acetonitrile. By addition of PPh4Cl it was converted to (PPh4)2[As2OCl6] · 3 CH3CN. According to their X-ray crystal structure analyses, both crystallize in the triclinic space group P 1. The [As4O2Cl10]2– ion can be regarded as a centrosymmetric association product of two Cl2AsOAsCl2 molecules and two Cl ions, each Cl ion being coordinated with all four As atoms. In the [As2OCl6]2– ion the As atoms are linked via the O atom and two Cl atoms.  相似文献   

6.
Crystal Structures of the Hexachlorometalates NH4[SbCl6], NH4[WCl6], [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 and (PPh4)2[WCl6]·4CH3CN The crystal structures of the title compounds were determined by single crystal X‐ray methods. NH4[SbCl6] and NH4[WCl6] crystallize isotypically in the space group C2/c with four formula units per unit cell. The NH4+ ions occupy a twofold crystallographic axis, whereas the metal atoms of the [MCl6] ions occupy a centre of inversion. There exist weak interionic hydrogen bridges. [K(18‐crown‐6)(CH2Cl2)]2[WCl6]·6CH2Cl2 crystallizes in the orthorhombic space group R3¯/m with Z = 3. The compound forms centrosymmetric ion triples, in which the potassium ions are coordinated with a WCl3 face each. In trans‐position to it the chlorine atom of a CH2Cl2 molecule is coordinated so that, together with the oxygen atoms of the crown ether, coordination number 10 is achieved. (PPh4)2[WCl6]·4CH3CN crystallizes in the monoclinic space group P21/c with Z = 4. This compound, too, forms centrosymmetric ion triples, in which in addition the acetonitrile molecules are connected with the [WCl6]2— ion via weak C—H···Cl contacts.  相似文献   

7.
[Sb(12-Crown-4)2(CH3CN)][SbCl6]3 and [Bi(12-Crown-4)2(CH3CN)][SbCl6]3, first Trications of Antimony(III) and Bismuth(III) The crown ether complexes [M(12-crown-4)2(CH3CN)][SbCl6]3 with M = Sb and Bi are formed by the reaction of antimony trichloride and bismuth trichloride, respectively, with antimony pentachloride in acetonitrile solution in the presence of 12-crown-4. They form colourless, moisture sensitive crystals, which were characterized by X-ray structure determinations and by IR spectroscopy. The complex with M = Sb was also characterized by 121Sb Mössbauer spectroscopy. Both complexes crystallize isotypically in the orthorhombic space group Pbcn with four formula units per unit cell. M = Sb: 3 483 observed unique reflections, R = 0.038. M = Bi: 2 958 observed unique reflections, R = 0.036. The compounds consist of SbCl6? ions and trications [M(12-crown-4)2(CH3CN)]3+, in which the M3+ ions are ninefold coordinated by the eight oxygen atoms of the crown ether molecules and by the nitrogen atom of the acetonitrile molecule. The lone pair of the M3+ ions has no steric effect.  相似文献   

8.
The Syntheses and Vibrational Spectra of the Homoleptic Metal Acetonitrile Cations [Au(NCCH3)2]+, [Pd(NCCH3)4]2+, [Pt(NCCH3)4]2+, and the Adduct CH3CN · SbF5. The Crystal and Molecular Structures of [M(NCCH3)4][SbF6]2 · CH3CN, M = Pd or Pt Solvolyses of the homoleptic metal carbonyl salts [M(CO)4][Sb2F11]2, M = Pd or Pt, in acetonitrile leads at 50 °C both to complete ligand exchange for the cations as well as to a conversion of the di-octahedral anion [Sb2F11] into [SbF6] and the molecular adduct CH3CN · SbF5 according to: [M(CO)4][Sb2F11]2 + 7 CH3CN → [M(NCCH3)4][SbF6]2 · CH3CN + 2 CH3CN · SbF5 + 4 CO M = Pd, Pt The monosolvated [M(NCCH3)4][SbF6]2 · CH3CN are obtained as single crystals from solution and are structurally characterized by single crystal x-ray diffraction. Both salts are isostructural. The cations are square planar but the N–C–C-sceletial groups of the ligands depart slightly from linearity. The new acetonitrile complexes as well as [Au(NCCH3)2][SbF6] and the adduct CH3CN · SbF5 are completely characterized by vibrational spectroscopy.  相似文献   

9.
《Polyhedron》1999,18(26):3527-3531
The redox reaction between [Pt(NH3)4]2+ and [W(CN)8]3− in the presence of Cl anions in aqueous solution affords single crystals of [PtII(NH3)4]2[WIV(CN)8] and [PtIV(NH3)4Cl2]Cl2. Trapped cyano ligands of [W(CN)8]4− rectangular antiprisms of D2 point symmetry between parallel Pt(II) square planes show that the inner-sphere redox pathway is prohibited. The presence of Cl counterions enables the formation of [Pt(NH3)4Cl2]Cl2 as the product of the rare outer-sphere pathway of the oxidation of Pt(II) by [W(CN)8]3−.  相似文献   

10.
Crystal Structure of (AsPh4)2[W2NCl10] The title compound is formed by a slow reaction of AsPh4[WNCl4] in acetonitrile solution in form of dark brown crystals. The crystal structure was solved by X-ray diffraction methods (R = 4.7%; 1461 observed, independent reflexions). (AsPh4)2[W2NCl10] crystallizes in the monoclinic space group P21/n with two formula units per unit cell. The structure consists of AsPh4θ and [W2NCl10] ions. The tungsten atoms with oxidation numbers five and six respectively, are linked by a linear, asymmetric nitrido bridge (r WN = 171 and 203 pm). The trans-effect of the W? N-multiple bonds causes a significant difference between axial (W? Clax 243 pm) and equatorial (mean W? Cleq 230 pm) bond lengths.  相似文献   

11.
Synthesis and Crystal Structure of the Nitrido Complex [Na-15-crown-5]2[MoNF4]2 · 2 CH3CN The title compound is synthesized by the reaction of [MoCl4(NSCl)]2 with excess NaF in boiling acetonitrile in the presence of the crown ether 15-crown-5. [Na-15-crown-5]2[MoNF4]2 · 2 CH3CN forms yellow crystals, which were characterized by an X-ray structure determination. Space group P1 , Z = 1. Lattice dimensions at ?90°C: a = 855.5, b = 1 069.9, C = 1 143.5 pm, α = 105.71°, β = 95.29°, γ = 102.25° (4 096 independent observed reflexions, R = 0.039). Short Na…?F contacts of 234 pm with the four axial fluoro ligands of the dimeric anion [MoNF4]22? allow formulation of a triple ion. The centrosymmetric anion is dimerized by bent fluoro bridges with Mo? F distances of 198 and 245 pm. The long Mo? F distances of the MoF2Mo ring are in transposition to the nitrido ligands, the bond lengths of which (165 pm) correspond to triple bonds.  相似文献   

12.
4-Methyl-1,2,3,5-dithiadiazolium Salts. Crystal Structures of(CH3CN2S2)5[CoCl4]Cl3 and (CH3CN2S2)Cl 4-Methyl-1,2,3,5-dithiadiazolium tetrachlorocobaltate trichloride, (CH3CN2S2)5[CoCl4]Cl3, was obtained by reaction of trithiazyl chloride, (NSCl)3, with CoCl2 in acetonitrile; it forms brown, moisture sensitive crystals. With tetraphenylarsonium chloride in CH2Cl2 it yields yellow crystalline (CH3CN2S2)Cl and (AsPh4)2CoCl4. The IR spectra of the title compounds are reported and assigned. Theit crystal structures were determined by X-ray diffraction. Crystal data: (CH3CN2S2)5[CoCl4]Cl3, orthorhombic, P212121, Z = 4, a = 830, b = 1603, c = 2443 pm at 180 K (structure determination with 1787 observed independent reflexions, R = 0.070); (CH3CN2S2)Cl, triclinic, P212121, Z = 4, a = 749, b = 819, c = 1015 pm, α = 84.9, β = 67.4, γ = 84.6° at 296 K (2653 reflexions, R = 0.040). Both compounds are ionic, having chloride and distorted tetrahedral CoCl42? anions and planar 4-methyl-1,2,3,5-dithiadiazolium cations which nearly fulfill C2v symmetry. The (CH3CN2S2)5[CoCl4]Cl3 structure contains five symmetry independent cations, (CH3CN2Cl has two symmetry independent cations, all being nearly equal. No nitrogen atom but all sulfur atoms of the cations have contact with three to five chlorine atoms, and as a rule there is one chloride ion which is coplanar with the cation and exhibits rather short distances to both S atoms (288 to 309 pm); therefore, the positive charge of the cations must be concentrated on the sulfur atoms.  相似文献   

13.
Synthesis and Crystal Structures of (PPh4)2[TeS3] · 2 CH3CN and (PPh4)2[Te(S5)2] (PPh4)2[TeS3] · 2 CH3CN was obtained by the reaction of PPh4Cl, Na2S4 and Te in acetonitrile. With sulfur it reacts yielding (PPh4)2[Te(S5)2]. The crystal structures of both products were determined by X-ray diffraction. (PPh4)2[TeS3] · 2 CH3CN: triclinic, space group P1 , Z = 2, R = 0.041 for 4 629 reflexions; it contains trigonal-pyramidal [TeS3]2? ions with an average Te? S bond length of 233 pm. (PPh3)2[Te(S5)2]: monoclinic, P21/n, Z = 2, R = 0.037 for 2 341 reflexions. In the [Te(S5)2]2? ion the tellurium atom has a nearly square coordination by four S atoms. Along with the Te atoms each of the two S5 groups forms a ring with chair conformation.  相似文献   

14.
Thiochlorowolframates with Tungsten(V) and (VI). Crystal Structures of PPh4[WSCl4] and (PPh4)2[WS2Cl4] · 2 CH2Cl2 Diamagnetic (NEt4)2[WSCl4]2, having tungsten atoms linked via sulfur atoms, is obtained by the reaction of WCl5 with NEt4SH as well as by the reduction of WSCl4 with NEt4I in dichloromethane. If the reduction is performed with PPh4I, PPh4[WSCl4] with monomer anions is formed. Reaction of WCl6 with H2S in dichloromethane yields brown, insoluble WS2Cl2 which has terminal W?S groups and bridging W? S? W groups according to its IR spectrum. WS2Cl2 and PPh4Cl react to afford PPh4[WS2Cl3] · 2 CH2Cl2 and (PPh4)2[WS2Cl4] · 2 CH2Cl2. IR spectra are reported. The crystal structures of PPh4[WSCl4] and (PPh4)2[WS2Cl4] · 2 CH2Cl2 were determined by X-ray diffraction. PPh4[WSCl4]: tetragonal, space group P4/n, Z = 2, a = 1292.3 pm, c = 763.2 pm; R = 0.054 for 898 observed reflexions. The [WSCl4]? ion has the structure of a square pyramid with a rather short W?S bond of 206 pm length. (PPh4)2[WS2Cl4] · 2 CH2Cl2: triclinic, space group P1 , a = 1017.7, b = 1114.5, c = 1243.4 pm, α = 70.61, β = 79.73, γ = 80.80°; R = 0.076 for 1804 reflexions. The [WS2Cl4]2? has cis configuration; as it is situated on an inversion center it shows positional disorder.  相似文献   

15.
Halogeno-Nitrosyl Complexes of Molybdenum and Tungsten. Crystal Structures of [Na2(15-Crown-5)2(CH3CN)][MoCl4(NO)2] and [Na(15-Crown-5)]2[MoF4Cl(NO)] MoCl2(NO)2 and WCl2(NO)2, respectively, react with excess sodium fluoride in acetonitrile at room temperature and in the presence of 15-crown-5 to give crystalline mixtures, which consist of the title compounds, respectively of [Na(15-crown-5)]2[WCl4(NO)2] and [Na(15-crown-5)]2[WF4Cl(NO)], and which can be separated by selection. The complexes are characterized by their i.r. spectra, the molybdenum compounds additionally by crystal structure determinations. [Na2(15-crown-5)2(CH3CN)][MoCl4(NO)2]: Space group P21, Z = 2, 5415 independent unique reflexions, R = 0.039. Lattice dimensions at ?10°C: a = 984.3, b = 1231.1, c = 1483.0 pm, β = 105.67°. The compound consists of cations [Ne(l5-crown-5)(CH3CN)]+, in which the sodium ion is surrounded by the five O-atoms of the crown ether and by the N-atom of the acetonitrile molecule, as well as of anions, which form an ion pair {Na(15-crown-5)[MoCl4(NO)2]}?. In the in pairs the sodium ion is coordinated by the five oxygen atoms of the crown ether and by two chlorine atoms of the [MoCI4(NO)2]2? unit. The nitrosyl ligands take the cis-position a t the molybdenum atom which is in a distorted octahedrally fashion. [Na(15-crown-5)]2[MoF4Cl(NO)]. Space group C2/c, Z = 4, 1933 independent unique reflexions, R = 0.078. Lattice dimensions at ?7O°C: D : 1.585.8, b = 1171.5, c = 1771.5 pm, β = 114.91°. The compound forms an ion triple, in which the sodium ions are linked to five oxygen atoms each of the crown ether molecules, and to two F-atoms of the [MoF4Cl(NO)]2? unit. The F-atom which is arranged in trans-position to the nitrosyl ligand coordinates with both sodium ions; thus an unusual T-shaped arrangement results for this F-atom. The sole terminal F-Atom and the Cl-atom are disordered in two positions.  相似文献   

16.
[Zr2Cl4(NPMe3)4(HNPMe3)] · CH3CN, a Phosphorane Iminato Complex with Zr?N Double Bonds The title compound has been prepared from a molten mixture of ZrCl4 with Me3SiNPMe3 in the presence of potassium fluoride and subsequent extraction with acetonitrile. According to the crystal structure determination the zirconium atoms are linked by three μ2-N atoms of two NPMe3? groups and by the HNPMe3 molecule. Two terminal bounded chlorine atoms and a terminally coordinated NPMe3? ligand complete the distorted octahedral surrounding of the zirconium atoms thus forming an edge sharing double octahedron. The ZrN bond lengths of the terminal NPMe3? groups of 194.6 pm correspond with double bonds.  相似文献   

17.
Syntheses and Crystal Structures of the Thiochloroantimonates(III) PPh4[Sb2SCl5] and (PPh4)2[Sb2SCl6]. CH3CN (PPh4)2Sb3Cl11, obtained from Sb2S3, PPh4Cl and HCl, reacts with Na2S4 in acetonitrile forming PPh4[Sb2SCl5]. From this and Na2S4 or from (PPh4)2[Sb2Cl8] and Na2S4 or K2S5 in acetonitrile (PPh4)2[Sb2SCl6] · CH3CN is obtained. Data obtained from the X-ray crystal structure determinations are: PPh4[Sb2SCl5], monoclinic, space group P21/c, a = 1002.9(3), b = 1705.6(5), c = 1653.7(5) pm, β = 99.12(2)°, Z = 4, R = 0.068 for 1283 reflextions; (PPh4)2[Sb2SCl6] · CH3CN, triclinic, space group P1 , a = 1287.8(7), b = 1343.6(9), c = 1696.5(9) pm, α = 69.82(5), β = 85.08(4), γ = 71.54(6)°, Z = 2, R = 0.059 for 6409 reflexions. In every anion two Sb atoms are linked via one sulfur and one ore two chloro atoms, respectively. Paris of [SbSCl5]? ions are associated via Sb …? S and Sb …? Cl contacts forming dimer units. In both compounds every Sb atom has a distorted octahedral coordination when the lone electron pair is included in the counting.  相似文献   

18.
Crystal Structure and Vibrational Spectrum of (H2NPPh3)2[SnCl6]·2CH3CN Single crystals of (H2NPPh3)2[SnCl6]·2CH3CN ( 1 ) were obtained by oxidative addition of tin(II) chloride with N‐chloro‐triphenylphosphanimine in acetonitrile in the presence of water. 1 is characterized by IR and Raman spectroscopy as well as by a single crystal structure determination: Space group , Z = 2, lattice dimensions at 193 K: a = 1029.6(1), b = 1441.0(2), c = 1446.1(2) pm, α = 90.91(1)°, β = 92.21(1)°, γ = 92.98(1)°, R1 = 0.0332. 1 forms an ionic structure with two different site positions of the [SnCl6]2? ions. One of them is surrounded by four N‐hydrogen atoms of four (H2NPPh3)+ ions, four CH3CN molecules form N–H···N≡C–CH3 contacts with the other four N‐hydrogen atoms of the cations. Thus, 1 can be written as [(H2NPPh3)4(CH3CN)4(SnCl6)]2+[SnCl6]2?.  相似文献   

19.
Reactions of MoNCl3 and WNCl3 with Elemental Fluorine. Crystal Structures of [MoO2F2(THF)2] and [WF4(NCl)(CH3CN)] The nitrido chlorides MoNCl3 and WNCl3 as well as WCl4(NCl) react with elemental fluorine forming the N-chloro imido complexes MoF4(NCl) and WF4(NCl), which were characterized by IR spectroscopy. With tetrahydrofurane MoF4(NCl) reacts to give [MoF4(NCl)(THF)], which in THF solution slowly converts into [MoO2F2(THF)2]. From WF4(NCl) with acetonitrile the complex [WF4(NCl)(CH3CN)] is obtained. Both donor acceptor complexes were characterized by crystal structure determinations. [MoO2F2(THF)2] : Space group P21/n, Z = 4, structure solution with 1823 unique reflections, R = 0.033 for reflections with I > 2σ(I). Lattice dimensions at ?40°C: a = 636.2, b = 1119.5, c = 1625.2 pm; β = 93.92(1)º. The compound has a monomeric molecular structure with the fluorine atoms in trans-position to one another and with the oxygen atoms of the THF molecules in trans to the oxo ligands. [WF4(NCl)(CH3CN)] : Space group P21/m, Z = 2, structure solution with 1119 unique reflections, R = 0.038 for reflections with I > 2σ(I). Lattice dimensions at 20°C: a = 511.7, b = 714.9, c = 1002.5 pm; β = 102.59(10)º. The compound has a monomeric molecular structure in which the nitrogen atom of the acetonitrile molecule coordinates in trans-position to the N-chloro imido group W?N? Cl. The structural parameters of this group are WN = 172.2 pm, NCl = 161.1 pm, WNCl = 178.6º.  相似文献   

20.
A series of novel molybdenum(V) and tungsten(VI) oxoazides was prepared starting from [MOF4] (M=Mo, W) and Me3SiN3. While [WO(N3)4] was formed through fluoride–azide exchange in the reaction of Me3SiN3 with WOF4 in SO2 solution, the reaction with MoOF4 resulted in a reduction of MoVI to MoV and formation of [MoO(N3)3]. Carried out in acetonitrile solution, these reactions resulted in the isolation of the corresponding adducts [MoO(N3)3?2 CH3CN] and [WO(N3)4?CH3CN]. Subsequent reactions of [MoO(N3)3] with 2,2′‐bipyridine and [PPh4][N3] resulted in the formation and isolation of [(bipy)MoO(N3)3] and [PPh4]2[MoO(N3)5], respectively. Most molybdenum(V) and tungsten(VI) oxoazides were fully characterized by their vibrational spectra, impact, friction and thermal sensitivity data and, in the case of [WO(N3)4?CH3CN], [(bipy)MoO(N3)3], and [PPh4]2[MoO(N3)5], by their X‐ray crystal structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号