首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diblock copolymers consisting of a multibranched polymethacrylate segment with densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and a poly(N‐isopropylacrylamide) segment were synthesized by a combination of living cationic polymerization and RAFT polymerization. A macromonomer having both a poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] backbone and a terminal methacryloyl group was synthesized by living cationic polymerization. The sequential RAFT copolymerizations of the macromonomer and N‐isopropylacrylamide in this order were performed in aqueous media employing 4‐cyanopentanoic acid dithiobenzoate as a chain transfer agent and 4,4′‐azobis(4‐cyanopentanoic acid) as an initiator. The obtained diblock copolymers possessed relatively narrow molecular weight distributions and controlled molecular weights. The thermoresponsive properties of these polymers were investigated. Upon heating, the aqueous solutions of the diblock copolymers exhibited two‐stage thermoresponsive properties denoted by the appearance of two cloud points, indicating that the densely grafted poly[2‐(2‐methoxyethoxy)ethyl vinyl ether] pendants and the poly(N‐isopropylacrylamide) segments independently responded to temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
This paper reports the synthesis and characterization of new, functionalized poly(alkyl vinyl ether) oligomers, and block copolymers containing poly(alkyl vinyl ether) and poly(methyl methacrylate). Using the HI/ZnI2 initiating system in nonpolar solvents (hexane, toluene) at −20°C, both monofunctional and difunctional poly(alkyl vinyl ether) oligomers of predicted molecular weights precisely terminated with aldehyde, primary hydroxyl and ester endgroups have been prepared. Novel diblock copolymers comprised of poly(methyl methacrylate) and poly(butyl vinyl ether) have also been synthesized using a combination of living cationic and living group transfer polymerization.  相似文献   

3.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

4.
A series of cyclopentadiene (CPD)‐based polymers and copolymers were synthesized by a controlled cationic polymerization of CPD. End‐functionalized poly(CPD) was synthesized with the HCl adducts [initiator = CH3CH(OCH2CH2X)Cl; X = Cl ( 2a ), acetate ( 2b ), or methacrylate] of vinyl ethers carrying pendant functional substituents X in conjunction with SnCl4 (Lewis acid as a catalyst) and n‐Bu4NCl (as an additive) in dichloromethane at −78 °C. The system led to the controlled cationic polymerizations of CPD to give controlled α‐end‐functionalized poly(CPD)s with almost quantitative attachment of the functional groups (Fn ∼ 1). With the 2a or 2b /SnCl4/n‐Bu4NCl initiating systems, diblock copolymers of 2‐chloroethyl vinyl ether (CEVE) and 2‐acetoxyethyl vinyl ether with CPD were also synthesized by the sequential polymerization of CPD and these vinyl ethers. An ABA‐type triblock copolymer of CPD (A) and CEVE (B) was also prepared with a bifunctional initiator. The copolymerization of CPD and CEVE with 2a /SnCl4/n‐Bu4NCl afforded random copolymers with controlled molecular weights and narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.3–1.4). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 398–407, 2001  相似文献   

5.
Synthesis of novel triblock, polycaprolactone-b-polydimethylsiloxane (PDMS) and poly(2-ethyl-oxazoline)-b-PDMS copolymers were demonstrated. These materials were obtained via the ring-opening polymerization of ?-caprolactone or 2-ethyl-2-oxazoline monomers by using organofunctionally terminated PDMS oligomers as initiators and comonomers. Segment molecular weights in these copolymers were varied over a wide range between 1000 and 2000 g/mol and the formation of copolymers with desired backbone compositions were monitored by 1H-NMR spectroscopy and GPC. DSC and TMA studies showed the formation of two phase morphologies with PDMS (Tg, ?120°C) and polycaprolactone (Tm, 50–60°C) or poly(2-ethyl-2-oxazoline) (Tg, 40-60°C) transitions respectively. The use of polycaprolactone-b-PDMS copolymers as surface modifying additives in polymer blends were also investigated. When these copolymers were blended at low levels (0.25–10.0% by weight) with various commercial resins such as, polyurethanes, PVC, PMMA, and PET, the resulting systems displayed silicone-like, hydrophobic surface properties, as determined by critical surface tension measurements or water contact angles. The effect of siloxane content, block length, base polymer type and morphology on the resulting surfaces are discussed.  相似文献   

6.
Poly(vinyl laurate) (PVL) and poly(vinyl stearate) (PVS) were synthesized by means of cobalt‐mediated radical polymerization (CMRP). Cobalt(II) diacetylacetonate (Co(acac)2) was demonstrated to control the radical polymerization of these monomers in solution. Molecular weights up to 15,000 g·mol?1 were obtained with reasonably low polydispersity indices (PDI < 1.3). The efficiency of the redox initiator [lauroyle peroxide (LPO)/citric acid (CA)] was found to be low (around 10%) as already reported for vinyl acetate. The solvent and temperature were found to have a very weak influence on the initiator efficiency. It appeared that CA played no role in the initiation process that only involved a redox reaction between LPO and Co(acac)2. PVL‐b‐PVS diblock copolymers could be synthesized using two strategies: (1) Sequential addition, that is, addition of the second monomer (VS) at high conversion of the first one (VL). (2) Macroinitiator technique, that is, isolation of a PVL macroinitiator then polymerization of VS from this cobalt functionalized macroinitiator. Both techniques allowed the synthesis of diblock copolymers with molar masses around 25,000 g·mol?1 and PDI lower than 1.4. The resulting materials were characterized by DSC, revealing that both blocks exhibit side‐chain crystallinity and phase segregate in the bulk. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Biodegradable copolymers have received much more attention in the last decades due their potential applications in the fields related to environmental protection, medicine, agriculture, and the chemical processes. Silver nanoparticles (Ag NPs) were prepared via reduction of silver nitrate (AgNO3) using biodegradable amphiphilic copolymers in aqueous solution. The micelles were constructed from the amphiphilic copolymer composed of poly(2-ethyl-2-oxazoline) and poly(ε-caprolactone). The Ag NPs with a diameter of 10–15?nm were found to show a comparable high catalytic activity toward the reduction of 4-nitrophenol (4-NP) in the presence of an excess amount of NaBH4. The synthesized Ag NPs-loaded copolymer exhibits high catalytic activity for the reduction of 4-NP to 4-aminophenol.  相似文献   

8.
Amphiphilic diblock copolymers were prepared by the living cationic polymerization of vinyl ethers in the presence of added bases, and their selective solvent‐induced physical gelation behavior was investigated. The block copolymerization of 2‐phenoxyethyl vinyl ether (PhOVE) and 2‐methoxyethyl vinyl ether (MOVE) was carried out in the presence of ethyl acetate with Et1.5AlCl1.5 in toluene at 0 °C. Despite the rate difference, diblock copolymers with a very narrow molecular weight distribution were obtained, quantitatively. By adding the selective solvent, water, to the acetone solution of the diblock copolymer, PhOVE200b‐MOVE400, physical gelation occurred suddenly and the system ceased to flow, maintaining transparency. Viscoelastic measurements and transmission electron microscopic observations were performed to examine the characteristic gelation behavior and structure of the obtained gels. Various gelation conditions and physical gelation by other amphiphilic block copolymers were also designed on the basis of the solubility of each block segment. Further, new forms of physical gelation, accompanied by the solubilization of immiscible organic compounds, were achieved using similar diblock copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3190–3197, 2001  相似文献   

9.
The present study expands the versatility of cationic poly(2-oxazoline) (POx) copolymers as a polyethylene glycol (PEG)-free platform for gene delivery to immune cells, such as monocytes and macrophages. Several block copolymers are developed by varying nonionic hydrophilic blocks (poly(2-methyl-2-oxazoline) (pMeOx) or poly(2-ethyl-2-oxazoline) (pEtOx), cationic blocks, and an optional hydrophobic block (poly(2-isopropyl-2-oxazoline) (iPrOx). The cationic blocks are produced by side chain modification of 2-methoxy-carboxyethyl-2-oxazoline (MestOx) block precursor with diethylenetriamine (DET) or tris(2-aminoethyl)amine (TREN). For the attachment of a targeting ligand, mannose, azide-alkyne cycloaddition click chemistry methods are employed. Of the two cationic side chains, polyplexes made with DET-containing copolymers transfect macrophages significantly better than those made with TREN-based copolymer. Likewise, nontargeted pEtOx-based diblock copolymer is more active in cell transfection than pMeOx-based copolymer. The triblock copolymer with hydrophobic block iPrOx performs poorly compared to the diblock copolymer which lacks this additional block. Surprisingly, attachment of a mannose ligand to either copolymer is inhibitory for transfection. Despite similarities in size and design, mannosylated polyplexes result in lower cell internalization compared to nonmannosylated polyplexes. Thus, PEG-free, nontargeted DET-, and pEtOx-based diblock copolymer outperforms other studied structures in the transfection of macrophages and displays transfection levels comparable to GeneJuice, a commercial nonlipid transfection reagent.  相似文献   

10.
3,5‐bis(4‐aminophenoxy)phenyl phenylcarbamate—a novel AB2‐type blocked isocyanate monomer and 3,5‐bis{ethyleneoxy(4‐aminophenoxy)}phenyl carbonyl azide—a novel AB2‐type azide monomer were synthesized in high yield. Step‐growth polymerization of these monomers were found to give a first example of hyperbranched poly (aryl‐ether‐urea) and poly(aryl‐alkyl‐ether‐urea). Molecular weights (Mw) of the polymer were found to vary from 1,858 to 52,432 depending upon the monomer and experimental conditions used. The polydispersity indexes were relatively narrow due to the controlled regeneration of isocyanate functional groups for the polymerization reaction. The degree of branching (DB) was determined using 1H‐NMR spectroscopy and the values ranged from 87 to 54%. All the polymers underwent two‐stage decomposition and were stable up to 300 °C. Functionalized end‐capping of poly(aryl‐ether‐urea) using phenylchloroformate and di‐t‐butyl dicarbonate (Boc)2O changed the thermal properties and solubility of the polymers. Copolymerization of AB2‐type blocked isocyante monomer with functionally similar AB monomer were also carried out. The molecular weights of copolymers were found to be in the order of 6 × 105 with narrow dispersity. It was found that the Tg's of poly(aryl‐alkyl‐ether‐urea)s were significantly less (46–49 °C) compared to poly(aryl‐ether‐urea)s. Moreover the former showed melting transition at 154 °C, which was not observed in the latter case. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2959–2977, 2007  相似文献   

11.
High molecular weight bisphenol A or hydroquinone‐based poly(arylene ether phosphine oxide/sulfone) homopolymer or statistical copolymers were synthesized and characterized by thermal analysis, gel permeation chromatography, and intrinsic viscosity. Miscibility studies of blends of these copolymers with a (bisphenol A)‐epichlorohydrin based poly(hydroxy ether), termed phenoxy resin, were conducted by infrared spectroscopy, dynamic mechanical analysis, and differential scanning calorimetry. All of the data are consistent with strong hydrogen bonding between the phosphonyl groups of the copolymers and the pendent hydroxyl groups of the phenoxy resin as the miscibility‐inducing mechanism. Complete miscibility at all blend compositions was achieved with as little as 20 mol % of phosphine oxide units in the bisphenol A poly(arylene ether phosphine oxide/sulfone) copolymer. Single glass transition temperatures (Tg) from about 100 to 200°C were achieved. Replacement of bisphenol A by hydroquinone in the copolymer synthesis did not significantly affect blend miscibilities. Examination of the data within the framework of four existing blend Tg composition equations revealed Tg elevation attributable to phosphonyl/hydroxyl hydrogen bonding interactions. Because of the structural similarities of phenoxy, epoxy, and vinylester resins, the new poly(arylene ether phosphine oxide/sulfone) copolymers should find many applications as impact‐improving and interphase materials in thermoplastics and thermoset composite blend compositions. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1849–1862, 1999  相似文献   

12.
Cationic polymerization of α‐methyl vinyl ethers was examined using an IBEA‐Et1.5AlCl1.5/SnCl4 initiating system in toluene in the presence of ethyl acetate at 0 ~ ?78 °C. 2‐Ethylhexyl 2‐propenyl ether (EHPE) had a higher reactivity, compared to corresponding vinyl ethers. But the resulting polymers had low molecular weights at 0 or ?50 °C. In contrast, the polymerization of EHPE at ?78 °C almost quantitatively proceeded, and the number‐average molecular weight (Mn) of the obtained polymers increased in direct proportion to the EHPE conversion with quite narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight ≤ 1.05). In monomer‐addition experiments, the Mn of the polymers shifted higher with low polydispersity as the polymerization proceeded, indicative of living polymerization. In the polymerization of methyl 2‐propenyl ether (MPE), the living‐like propagation also occurred under the reaction conditions similar to those for EHPE, but the elimination of the pendant methoxy groups was observed. The introduction of a more stable terminal group, quenched with sodium diethyl malonate, suppressed this decomposition, and the living polymerization proceeded. The glass transition temperature of the obtained poly(MPE) was 34 °C, which is much higher than that of the corresponding poly(vinyl ether). This poly(MPE) had solubility characteristics that differed from those of poly(vinyl ethers). © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2202–2211, 2008  相似文献   

13.
A new polymer with pendant hydroxyl groups, namely, poly(N-phenyl-2-hydroxytrime-thylene amine) (PHA), was synthesized by a direct condensation polymerization of aniline and epichlorohydrin in an alkaline medium. The new polymer is amorphous with a glass transition temperature (Tg) of 70°C. Blends of PHA with poly(ϵ-caprolactone) (PCL), as well as with two water-soluble polyethers, poly(ethylene oxide) (PEO) and poly(vinyl methyl ether) (PVME), were prepared by casting from a common solvent. It was found that all the three blends were miscible and showed a single, composition dependent glass transition temperature (Tg). FTIR studies revealed that PHA can form hydrogen bonds with PCL, PEO, and PVME, which are driving forces for the miscibility of the blends. © 1997 John Wiley & Sons, Inc.  相似文献   

14.
Some possibilities of 1H NMR spectroscopy in investigations of structural-dynamic changes and polymer-solvent interactions during the temperature-induced phase transitions in aqueous polymer solutions are described. Results obtained recently on D2O solutions of poly(vinyl methyl ether) (PVME), poly(N-isopropylmethacrylamide) (PIPMAm), negatively charged copolymers of N-isopropylmethacrylamide and sodium methacrylate, and PIPMAm/PVME mixtures are discussed. A markedly different rate of dehydration process in dilute solutions on the one hand, and in semidilute and concentrated solutions on the other hand, was revealed from 1H spin-spin relaxation measurements.  相似文献   

15.
Eight-arm star-shaped poly(2-alkyl-2-oxazoline) (M?≈?21,000?g?·?mol?1) was studied by turbidimetry and light scattering in aqueous solutions within concentration ranging from 0.00038 to 0.0276?g?·?cm?3. The arms were the block copolymers of poly(2-isopropyl-2-oxazoline) (PiPrOx) and poly(2-ethyl-2-oxazoline) (PEtOx). Calix[8]arene core was connected with poly(2-isopropyl-2-oxazoline). The behavior of investigated polymer differed from that of thermosensitive stars with poly(2-alkyl-2-oxazoline) homopolymer arms. At low temperatures, the aggregates were formed due to interaction of hydrophobic cores. The phase separation temperatures T1 and T2 of studied star were higher than those for star-shaped poly(2-isopropyl-2-oxazoline) and lower than for poly(2-ethyl-2-oxazoline). T1 and T2 increased with dilution.  相似文献   

16.
A vinyl ether bearing a carbonate side group (2‐oxo‐1,3‐dioxolan‐4‐yl‐methyl vinyl ether, GCVE) was synthesized and copolymerized with various commercially available fluoroolefins [chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and perfluoromethyl vinyl ether (PMVE)] by radical copolymerization initiated by tert‐butyl peroxypivalate. Although HFP, PMVE, and vinyl ether do not homopolymerize under radical conditions, they copolymerized easily yielding alternating poly(GCVE‐alt‐F‐alkene) copolymers. These alternating structures were confirmed by elemental analysis as well as 1H, 19F, and 13C NMR spectroscopy. All copolymers were obtained in good yield (73–85%), with molecular weights ranging from 3900 to 4600 g mol?1 and polydispersities below 2.0. Their thermogravimetric analyses under air showed decomposition temperatures at 10% weight loss (Td,10%) in the 284–330°C range. The HFP‐based copolymer exhibited a better thermal stability than those based on CTFE and PMVE. The glass transition temperatures were in the 15–65°C range. These original copolymers may find potential interest as polymer electrolytes in lithium ions batteries. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
Fluorine‐containing amphiphilic ABA triblock copolymers, poly(2‐hydroxyethyl vinyl ether)‐block‐poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether]‐block‐poly(2‐hydroxyethyl vinyl ether) [poly(HOVE‐b‐PFPOVE‐b‐HOVE)] (HFH), poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether]‐block‐poly(2‐hydroxyethyl vinyl ether)‐block‐poly[2‐(2,2,3,3,3‐pentafluoropropoxy)ethyl vinyl ether] [poly(PFPOVE‐b‐HOVE‐b‐PFPOVE)] (FHF), and poly(n‐butyl vinyl ether)‐block‐poly(2‐hydroxyethyl vinyl ether)‐block‐poly(n‐butyl vinyl ether) [poly(NBVE‐b‐HOVE‐b‐NBVE)] (LHL), were synthesized, and their behavior in water was investigated. The aforementioned polymers were prepared by sequential living cationic polymerization of 2‐acetoxyethyl vinyl ether (AcOVE) and PFPOVE or NBVE, followed by hydrolysis of acetyl groups in polyAcOVE. FHF and LHL formed a hydrogel in water, whereas HFH gave a homogeneous aqueous solution. In addition, the gel‐forming concentration of FHF was much lower than that of corresponding LHL. Surface‐tension measurements of the aqueous polymer solutions revealed that all the triblock copolymers synthesized formed micelles or aggregates above about 1.0 × 10?4 mol/L. The surface tensions of HFH and FHF solutions above the critical micelle concentration were lower than those of LHL, indicating high surface activity of fluorine‐containing triblock copolymers. Small‐angle X‐ray scattering measurements revealed that HFH formed a core‐shell sperical micelle in 1 wt % aqueous solutions, whereas the other block copolymers caused more conplicated assembly in the solutions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3751–3760, 2001  相似文献   

18.
《Comptes Rendus Chimie》2014,17(2):151-155
In this work, we report a green synthetic method using water-dispersible magnetite nanoparticles containing oleic acid and poly(2-ethyl-2-oxazoline)-poly(ɛ-caprolactone) diblock copolymer as the magnetite nanoparticle dispersants. The Fe3O4 nanoparticles were prepared by co-precipitation and had a bilayer surface with a hydrophobic inner poly(ɛ-caprolactone) (PCL) layer and hydrophilic corona poly(2-ethyl-2-oxazoline) (POX) blocks. Also, the role of the ultrasonicating treatment's duration on the percent of magnetite in the complex and on its magnetic properties was investigated. Transmission electron microscopy (TEM) showed the average particle size to be about 10–20 nm in diameter for nanoparticles.  相似文献   

19.
The ABA‐type triblock copolymers consisting of poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] as outer hard segments and poly(6‐acetoxyhexyl vinyl ether) [poly(AcHVE)], poly(6‐hydroxyhexyl vinyl ether) [poly(HHVE)], or poly(2‐(2‐methoxyethoxy)ethyl vinyl ether) [poly(MOEOVE)] as inner soft segments were synthesized by sequential living cationic polymerization. Despite the presence of polar functional groups such as ester, hydroxyl, and oxyethylene units in their soft segments, the block copolymers formed elastomeric films. The thermal and mechanical properties and morphology of the block copolymers showed that the two polymer segments of these triblock copolymers were segregated into microphase‐separated structure. Effect of the functional groups in the soft segments on gas permeability was investigated as one of the characteristics of the new functional thermoplastic elastomers composed solely of poly(vinyl ether) backbones. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1114–1124  相似文献   

20.
We report on novel diblock copolymers of poly(N‐vinylcaprolactam) (PVCL) and poly(N‐vinyl‐2‐pyrrolidone) (PVPON) (PVCL‐b‐PVPON) with well‐defined block lengths synthesized by the MADIX/reversible addition‐fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self‐assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL?1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2725–2737  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号