首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An accurate numerical scheme has been devised to study the self-induced motion of an infinitely thin, free vortex sheet of finite span in an unbounded, inviscid, incompressible fluid. The new numerical scheme has been tested against two vortex sheet problems for which exact solutions have also been obtained. The agreement between the numerical and exact solutions is excellent. The scheme has been further tested against two more examples for which analytical solutions for small times were available. Here too the agreement is excellent.  相似文献   

2.
In this study, an advanced Lagrangian vortex- boundary element method is applied to simulate the unsteady impeller-diffuser interactions in a diffuser pump not only for design but also for off-design considerations. In velocity calculations based on the Biot-Savart law we do not have to grid large portions of the flow field and the calculation points are concentrated in the regions where vorticity is present. Lagrangian representation of the evolving vorticity field is well suited to moving boundaries. An integral pressure equation shows that the pressure distribution can be estimated directly from the instantaneous velocity and vorticity field. The numerical results are compared with the experimental data and the comparisons show that the method used in this study can provide us insight into the complicated unsteady impeller-diffuser interaction phenomena in a diffuser pump.  相似文献   

3.
Numerical simulations are used to study laminar vortex ring formation under the influence of background flow. The numerical setup includes a round-headed axisymmetric body with an opening at the posterior end from which a column of fluid is pushed out by a piston. The piston motion is explicitly included into the simulations by using a deforming mesh. A well-developed wake flow behind the body together with a finite-thickness boundary layer outside the opening is taken as the initial flow condition. As the jet is initiated, different vortex evolution behavior is observed depending on the combination of background flow velocity to mean piston velocity () ratio and piston stroke to opening diameter () ratio. For low background flow () with a short jet (), a leading vortex ring pinches off from the generating jet, with an increased formation number. For intermediate background flow () with a short jet (), a leading vortex ring also pinches off but with a reduced formation number. For intermediate background flow () with a long jet (), no vortex ring pinch-off is observed. For high background flow () with both a short () and a long () jet, the leading vortex structure is highly deformed with no single central axis of fluid rotation (when viewed in cross-section) as would be expected for a roll-up vortex ring. For , the vortex structure becomes isolated as the trailing jet is destroyed by the opposite-signed vorticity of the background flow. For , the vortex structure never pinches off from the trailing jet. The underlying mechanism is the interaction between the vorticity layer of the jet and the opposite-signed vorticity layer from the initial wake. This interaction depends on both and . A comparison is also made between the thrust generated by long, continuous jets and jet events constructed from a periodic series of short pulses having the same total mass flux. Force calculations suggest that long, continuous jets maximize thrust generation for a given amount of energy expended in creating the jet flow. The implications of the numerical results are discussed as they pertain to adult squid propulsion, which have been observed to generate long jets without a prominent leading vortex ring. PACS 02.60.Cb, 47.32.cf, 47.32.cb, 47.20.Ft, 47.63.M-  相似文献   

4.
Efforts are made to explore the hysteresis characteristics of vortex shedding in a pipe flow, whose velocity varies periodically in time. Results obtained show that during acceleration of the flow, the vortex strength tends to be stronger, whereas during deceleration of the flow, the situation is reversed. As reconstructed from the velocity signals measured at a point in the flow field, the shed vortex arrays appear to possess uneven vortex strengths in response to periodically-varying incoming flows. Furthermore, in the hysteresis range, the streamwise spacings between the vortices appear to be unequal.  相似文献   

5.
Three-dimensional direct numerical simulations of a solid-body rotation superposed on a uniform axial flow entering a rotating constant-area pipe of finite length are presented. Steady in time profiles of the radial, axial, and circumferential velocities are imposed at the pipe inlet. Convective boundary conditions are imposed at the pipe outlet.The Wang and Rusak(Phys. Fluids 8:1007–1016, 1996.doi:10.1063/1.86882) axisymmetric instability mechanism is retrieved at certain operational conditions in terms of incoming flow swirl levels and the Reynolds number. However, at other operational conditions there exists a dominant,three-dimensional spiral type of instability mode that is consistent with the linear stability theory of Wang et al.(J. Fluid Mech. 797: 284–321, 2016). The growth of this mode leads to a spiral type of flow roll-up that subsequently nonlinearly saturates on a large amplitude rotating spiral wave. The energy transfer mechanism between the bulk of the flow and the perturbations is studied by the Reynolds-Orr equation. The production or loss of the perturbation kinetic energy is combined of three components: the viscous loss, the convective loss at the pipe outlet, and the gain of energy at the outlet through the work done by the pressure perturbation. Theenergy transfer in the nonlinear stage is shown to be a natural extension of the linear stage with a nonlinear saturated process.  相似文献   

6.
In the present study, an experimental investigation was performed to characterize the vortex induced vibration (VIV) of a flexible cable in an oncoming shear flow. The VIV tests were conducted in a wind tunnel with a flexible cable model. It was found that, under different oncoming velocity profiles, the cable model behaved in single-mode and multi-mode VIVs. The displacement amplitudes of the single mode VIVs were found to be larger than those of multi-mode VIVs, and the cross-flow (CF) response was larger than that of in-line (IL) direction for either the single mode or multi-mode VIVs. For a single mode vibration, the largest CF response occurs in the 1st mode VIV, and the motion trajectory of the 1st mode VIV was found to be an inclined figure of eight shape, while other single mode VIVs behaved in ellipse or straight line trajectories. For multi-mode VIVs, no stable vibration trajectories were found to exist since the vibration frequency bands covered two or more vibration modes. The vortex-shedding frequencies in the wake behind the inclined cable were also characterized in the present study. The shedding frequencies of the wake vortices were found to coincide well with the vibration modes: for a single mode VIV, they were close to the dominant vibration mode; for a multi-mode VIV, they could also cover the appearing vibration modes.  相似文献   

7.
A three-dimensional study of suspension of drops in simple shear flow has been performed at finite Reynolds numbers. Results are obtained using a finite difference/front tracking method in a periodic domain. The effects of the Reynolds number and the Capillary number are addressed at two volume fractions: 0.195 and 0.34. It is observed that suspensions of deformable drops exhibit a shear-thinning behavior. Similar to the motion of a single drop, drops migrate away from the walls. The effective viscosity, the first and the second normal stress differences oscillate around a mean value in all cases. The first normal stress difference increases with the Capillary number, the Reynolds number and the volume fraction. Results show that drops deform more and orient more in the flow direction as the Capillary number or the volume fraction is increased. Also, the average size of clusters is smaller than for suspension of rigid particles. The radial dependence of the pair distribution function across the channel has been studied. This dependency shows that the tendency to form clusters is reduced as the Capillary number increases or the volume fraction decreases.  相似文献   

8.
The fully non-linear free surface potential flow past a 2D non-lifting body is computed. The numerical method is based on the simple layer integral formulation; the non-linear solution is obtained by means of an iterative procedure. Under some hypotheses, viscosity effects at the free surface are considered. All the numerical results obtained have been tested against analytical solutions and experimental results.  相似文献   

9.
A vortex cell (in this paper) is an aerodynamically shaped cavity in the surface of a body, for example a wing, designed specially to trap the separated vortex within it, thus preventing large-scale unsteady vortex shedding from the wing. Vortex stabilisation can be achieved either by the special geometry, as has already been done experimentally, or by a system of active control. In realistic conditions the boundary and mixing layers in the vortex cell are always turbulent. In the present study a model for calculating the flow in a vortex cell was obtained by replacing the laminar viscosity with the turbulent viscosity in the known high-Reynolds-number asymptotic theory of steady laminar flows in vortex cells. The model was implemented numerically and was shown to be faster than solving the Reynolds-averaged Navier–Stokes equations. An experimental facility with a vortex cell was built and experiments performed. Comparisons of the experimental results with the predictions of the model are reasonably satisfactory. The results also indicate that at least for flows in near-circular vortex cells it is sufficient to have accurate turbulence models only in thin viscous layers, while outside the viscosity should only be small enough to make the flow effectively inviscid.  相似文献   

10.
This paper describes a Biot–Savart discrete vortex model for simulating the flow patterns which occur when a single high-velocity inflow jet is used to stir the fluid within a circular container. The first stage of the model consists of conformally mapping the circular perimeter of the container onto a rectangle by means of a Schwarz–Christoffel transformation. A potential flow solution is then obtained for the flow inside the rectangle and this is transformed to give the potential flow inside the circle. In the second stage of the simulation, discrete vortices are added at the inlet of the physical system in order to model the inflow shear layers. Velocity components resulting from the discrete vortices and their images in the walls of the cylinder are superimposed on the uniform potential flow solution. The positions of the vortices are updated using a Lagrangian tracking procedure. Viscous effects are incorporated through the use of random walks. From the results it is shown that the discrete vortex method does predict qualitatively the important features of jet-forced reservoir flow.  相似文献   

11.
This article presents a numerical study on the influence of span length and wall temperature on the 3-D flow pattern around a square section vortex promoter located inside a micro-channel in the low Reynolds number regime. The first objective of the work is to quantify the critical Reynolds number that defines the onset of vortex shedding and to identify the different regimes that appear as a function of the channel aspect ratio (span to height ratio). We found that the critical Reynolds number for the onset of the Karman street regime increases as the aspect ratio decreases. In particular, for the aspect ratio of 1/2 the critical Reynolds number is nearly six times the critical Reynolds number of the 2-D problem. An intermediate oscillating regime between the steady and the Karman street solutions was also found to exist within a rather wide range of Reynolds numbers for small channel aspect ratios. The second objective was to investigate the influence of the vortex promoter wall temperature on both vortex shedding and flow pattern. This has practical engineering implications because the working fluid considered in the article is water that has a viscosity that depends significantly on temperature and promotes a strong coupling between the momentum and energy equations that influences the system behaviour. Results indicate that high surface temperature on the prism promotes the onset of the Karman street, suggesting design guidelines for micro-channel based heat sinks that make use of vortex promoters.  相似文献   

12.
We consider an incompressible and inviscid fluid flow, called “swirl flow” that rotates around a certain axis in three-dimensional space. We investigate numerically the dynamics of a three-dimensional vortex sheet which is defined as a surface across which the velocity field of the swirl flow changes discontinuously. The vortex method and a fast summation method are implemented on a parallel computer. These numerical methods make it possible to compute the evolution of the vortex sheet for a long time and to describe the complex dynamics of the sheet.  相似文献   

13.
An investigation is made of oscillatory phenomenon induced by an exothermic reaction. This oscillatory phenomenon occurs in a very thin mixing layer between two miscible and reacting fluids. A qualitative model based on the interaction among reaction, molecular momentum transfer, molecular heat transfer, molecular mass transfer and forced convective transfer was proposed by Kuroda and Ogawa [1994. Nonlinear waves in a shear flow with a diffusive exothermic reaction and its qualitative reasoning. Chem. Eng. Sci. 49(16), 2699-2708]. It is experimentally shown in the present study that the oscillatory patterns change in the flow direction. In the upstream area where oscillatory patterns are nearly straight stripes, effects of viscosity on those stripes are investigated. In the downstream area where stripes are wavy and disordered, fractal analysis is introduced to investigate the relationship between the transition of oscillatory flow patterns and process factors, i.e. the viscosity ratio, the entire viscosity, flow rate and the flow rate ratio. Fractal analysis is also applied to temperature oscillation, and it is confirmed that the characteristic patterns of oscillation become obscure as the entire viscosity increases. The entire viscosity is an important factor for controlling both oscillatory patterns of flow and temperature in this reactive flow system.  相似文献   

14.
Flow in a three-layer channel is modeled analytically. The channel consists of a transition layer sandwiched between a porous medium and a fluid clear of solid material. Within the transition layer, the reciprocal of the permeability varies linearly across the channel. The Brinkman model is used for the momentum equations for the porous medium layer and the transition layer. The velocity profile is obtained in closed form in terms of Airy, exponential, and polynomial functions. The overall volume flux and boundary friction factors are calculated and compared with values obtained with a two-layer model employing the Beavers–Joseph condition at the interface between a Darcy porous medium and a clear fluid.  相似文献   

15.
16.
The temperature separation in a vortex tube has been investigated for the purpose of exploring the phenomenon and improving the tube performance. Different explanations for the temperature separation have been proposed. However, there has not been a consensus in the hypothesis.This paper reports on a study in progress exploring the flow structure in a vortex tube. Flow visualization, using water as a working fluid, is used to reveal the existence of multiple circulation regions within the vortex tube and a new hypothesis describes the temperature separation mechanism. This research contributes to the understanding of the flow behavior in a vortex tube and supports the previous works that show the generation of the cold component of the flow is the result of the expansion near the cold nozzle and the hot component is produced due to the friction between the layers of flow.  相似文献   

17.
The concept vortex force in aerodynamics is systematically examined based on a new steady vortex-force theory (Wu et al., Vorticity and vortex dynamics, Springer, 2006) which expresses the aerodynamic force (and moment) by the volume and boundary integrals of the Lamb vector. In this paper, the underlying physics of this theory is explored, including the general role of the Lamb vector in nonlinear aerodynamics, its initial formation, and its relevance to the total-pressure non-uniformity. As a typical example, the theory is applied to the flow over a slender delta wing at a large angle of attack. The highly localized flow structures with high Lamb-vector peaks are identified in terms of their net contribution to various constituents of the total aerodynamic force. This vortex-force diagnosis sheds new light on the flow control and configuration optimization. The project supported partly by the National Natural Science Foundation of China (10572005).  相似文献   

18.
Energy harvesting from coherent fluid structures is a current research topic due to its application in the design of small self-powered sensors for underwater applications. The impact of a vortex dipole with a deformable cantilevered plate at the plate tip is herein studied numerically using a strongly coupled staggered fluid–structure interaction algorithm. Three dipole Reynolds numbers, Re=500, 1500, and 3000, are investigated for constant plate properties. As the dipole approaches the plate, positive vorticity is produced on the impact face, while negative vorticity is generated at the tip of the plate. Upon impact, the dipole splits into two, and two secondary dipoles are formed. The circulation and, therefore, the trajectories of these dipoles depend on both the Reynolds number and the elasticity of the plate, and these secondary dipoles may return for subsequent impacts. While the maximum deflection of the plate does not depend significantly on Reynolds number, the plate response due to subsequent impacts of secondary dipoles does vary with Reynolds number. These results elucidate the strong interdependency between plate deformation and vortex dynamics, as well as the effect of Reynolds number on both.  相似文献   

19.
The two-dimensional problem of supersonic air flow past a spherical electrode is considered on the basis of a joint solution of the Navier-Stokes equations for a neutral gas and the charged-particle transport equations in the diffusion-drift approximation. The self-sustained discharge is considered in the cathode regime of operation of the test electrode in a formulation analogous to that of the experimental study [1]. The thermal and non-thermal (action of the electrostatic force in the cathode layer of the space charge) mechanisms of action of the discharge on the flow field are investigated. Within the framework of the numerical model considered the effect of the electrostatic force turns out to be negligibly small and the main effect of the action on the flow is the heat release driven by the electric currents. The influence of the discharge on the flow field was manifested itself in a reduction of the aerodynamic drag by up to 25%.  相似文献   

20.
A new computational approach is developed for the analysis of vortex-dominated flow fields around highly swept wings at high angles of attack. In this approach an inviscid Euler technology is coupled with viscous models, similar to inviscid/boundary layer coupling. The viscous nature of the vortex core is represented by an algebraic model derived from the Navier–Stokes equations. The approach also accounts for the effects of the viscous shear layer near a wing surface through a modified surface boundary condition. The inviscid/viscous coupling consistently provides improved predictions of leading edge separation, vortex bursting and secondary vortex formation at relatively low computational cost. Results for several cases are compared with wind tunnel tests and other Euler and Navier-Stokes solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号