首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The mean-square molecular dipole moments 〈μ2〉 of carbazole, N-ethylcarbazole and of the sequence of poly(epoxypropylcarbazole) (PEPCa) oligomers of various molecular weights have been evaluated in solutions of these organic compounds in dioxan. For PEPCa the values of 〈μ2〉 have also been determined in the solid state. On the basis of the experimental results and of molecular mechanics calculations it has been shown that the orientation of the lateral group of PEPCa favors noninteracting racemic dyads. The temperature-dependence of the effective dipole moment of solid PEPCa follows the Onsager theory above 295 K.  相似文献   

2.
Dynamic mechanical relaxation measurements were carried out on two poly(monoalkylitaconates). Three relaxation peaks between −120 and 140°C were present. A prominent subglass relaxation (β) near −60°C was studied by means of the Fuoss-Kirkwood formalism. A slight viscoelastic activity (β′) was observed at room temperature, and then a high temperature peak (α), probably related to the glass transition, was found. A biparabolic model, double Cole constant phase element was used to model the experimental data in this zone. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
The semicrystalline microcellular closed‐cell foams are prepared by a two‐stage batch foaming process from poly(ether ether ketone) and characterized by scanning electronic microscopy. It can be observed that there are two kinds of cells with obviously different cellular sizes in the same transect and the distribution of larger cells (about 7 μm) looks like sandwich. The effects of foaming temperatures and transfer times on the cellular sizes and cell densities of porous materials were discussed. Particular emphasis was given to the effects of crystalline on the microcellular morphology. The relaxation mechanism of microcellular materials was systemically investigated by dynamic mechanics analysis. A plain on the storage modulus curve before Tg was observed due to the densification of cells. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2890–2898, 2007  相似文献   

4.
Binary blends of atactic poly(epichlorohydrin) (aPECH) and poly(3-hydroxybutyrate) (PHB) were investigated as a function of blend composition and crystallization conditions by dielectric relaxation spectroscopy. The quenched samples were found to be miscible in the whole composition range by detecting only one glass transition relaxation, for each composition, which could be closely described by the Gorden-Taylor equation. The cold-crystallized blends displayed two glass transition relaxations at all blend ratios indicating the coexisting of two amorphous populations: a pure aPECH phase dispersed mainly in the interfibrillar zones and a mixed amorphous phase held between crystal lamellae. The interlamellar trapping of aPECH was small and decreases with increasing the overall PHB content in the blend. At high crystallization temperatures the aPECH molecules was found to reside mainly in the interfibrillar regions due to its high mobility relative to the crystal growth rate of PHB. Our results suggest that because the intersegmental interaction in aPECH/PHB blends is weak, the mobility of the amorphous component at a given crystallization temperature decides diluent segregation.  相似文献   

5.
The dipole moments of 3(5)-nitropyrazole, its methyl-substituted derivatives, and H-complexes with dioxane were measured experimentally and estimated byab initio calculations (6-31G* basis set). Comparison of the experimental and calculated dipole moments suggests a shift of the tautomeric equilibrium toward the 3-nitroisomer. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2202–2203, November, 1999.  相似文献   

6.
The real‐time crystallization of absorbable poly(p‐dioxanone) (PDS) was studied by dielectric relaxation spectroscopy. The dipole dynamic changes in the diminishing amorphous phase were investigated over a wide range of crystallization conditions. The location, shape, and magnitude of the α relaxation and the apparent activation energy were monitored and compared before and after the onset of crystallization. We observed no correlation between the degree of crystallinity and the location (hence, the most probable relaxation time, τ) of the α relaxation from just after the initiation up to the latest stages of the isothermal crystallization. However, an abrupt change in the intensity of the α process and the apparent activation energy allowed for the precise detection of the onset of crystallization. This was probably caused by a reorganization of dipole units occurring a few moments before the crystallization began. As crystallization proceeded, an asymmetric broadening of the α peak was observed that was directly influenced by the appearance of a new lower frequency process that originated in the highly confined amorphous portion located inside the spherulites. Finally, PDS crystallization kinetics determined from the changes of the relaxed permittivity with time are discussed and compared with calorimetric and optical microscopy data. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2436–2448, 2000  相似文献   

7.
Measurements of the complex relative permittivity of poly(vinyl acetate) from 35 °C to 190 °C and poly(vinyl chloride) from 90 °C to 150 °C in the frequency range 10–2 –107 Hz and the pressure range 1–5000 bar are reported. Details of the pressure generating system and of the dielectric equipment are described.  相似文献   

8.
Dynamic mechanical and dielectric relaxational behavior of poly(monoethylphenyl itaconate) at different frequencies and temperatures was studied. Three relaxation zones are found. The dynamic mechanical response is dominated by a relaxation peak at room temperature, labeled β relaxation. Two prominent shoulders labelled as γ and α relaxations are observed. Because of the overlapping of the α and γ with the β relaxation, a deconvolution method to improve the understanding of these phenomena is proposed. In spite of the complexity of the experimental spectra, the proposed deconvolution method seems to be a convenient approach to interpret the relaxational behavior of this polymer. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2749–2756, 1997  相似文献   

9.
10.
The dielectric relaxation behavior of poly(phenylene sulfide), PPS, has been investigated from room temperature to 180°C. This study was undertaken to examine the mobility of the amorphous phase through the glass transition region, to determine the contribution that rigid amorphous phase material makes to the relaxation process. Semicrystalline samples contain a fraction of the rigid amorphous phase, which was determined from the heat capacity increment at the glass transition, using degree of crystallinity determined from x-ray scattering. In the dielectric experiment, we measured the temperature and frequency dependence of the real and imaginary parts of the dielectric function. ε″ vs. ε′ was used to determine the dielectric relaxation intensity, δε = εs–ε∞, at temperatures above the glass transition. For amorphous PPS, δε decreases as temperature increases, while for all semicrystalline PPS, δε increases with temperature. The ratio of semicrystalline intensity to amorphous intensity determines the total fraction of dipoles which are already relaxed at a given temperature. Results indicate that more and more rigid amorphous phase material relaxes as the temperature is increased. This provides the first evidence that rigid amorphous phase material in PPS contains chains that possess different levels of molecular mobility. Finally, to the temperature of the loss peak maximum, at a given frequency, we assign the value of the dielectric Tg. For both melt and cold crystallization, the dielectric Tg systematically decreases as the crystallization temperature increases, and as the fraction of rigid amorphous phase decreases.  相似文献   

11.
The mechanical relaxation spectrum of poly(monocyclohexylmethylene itaconate) (PMCMI) exhibits two well-developed absorptions in the glassy state that in increasing temperature order are named γ and β absorptions. Owing to the restricted conformational versatility of the backbone, the polymer presents a weak glass-rubber relaxation whose intensity is significantly lower than that of the γ absorption. Comparison of the mechanical spectrum of this polymer with that of poly(dicyclohexylmethylene itaconate) (PDCMI) allows the conclusion that the β relaxation is produced by motions in which the ? COOCH2C6H11 side groups are involved. The location of the mechanical γ peak suggests that this absorption is produced by flipping conformational transitions in the cyclohexyl residue. Three dielectric absorptions are observed in the glassy state of PMCMI which in increasing temperature order are called δ, γ, and β relaxations. Both the location and the activation energy of the dielectric and mechanical β absorptions suggest that both relaxations are caused by the same molecular motions. Dipolar interactions in the liquid and glassy state are calculated and the results compared with those experimentally evaluated. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
The mechanical and dielectric relaxation of a set of aromatic-aliphatic polyamides containing ether linkages have been examined as a function of temperature (−140 to 190°C) and frequency (3 to 106 Hz). The polymers differ in the orientation (meta and para) of the aromatic rings, in the length of the aliphatic chain, and in the number of ether linkages per repeating unit. Dynamic mechanical experiments showed three main relaxation peaks related to the glass transition temperature of the polymers (α relaxation), the subglass relaxations associated to the absorbed water molecules (β) and to the motion of the aliphatic moieties (γ). Dielectric experiments showed two subglass relaxation processes (β and γ) that correlates with the mechanical β and γ relaxations, and a conduction process (σ) above 50°C that masks the relaxation associated to the glass transition. A molecular interpretation is attempted to explain the position and intensity of the relaxation, studying the influence of the proportion of para- or meta- oriented phenylene rings, the presence of ether linkages and the length of the aliphatic chain. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys, 35: 457–468, 1997  相似文献   

13.
Two different series of poly(ester imide)s, which are distinguished from each other in the orientation of the ester linkages and show well-differentiated thermotropic behavior, are investigated by means of model calculations and dielectric relaxation spectroscopy. Model calculations show that the orientation of the ester linkages has a strong influence on the rotational energy barriers. The dielectric relaxation spectra of both series shows three relaxation regions in the temperature range between 100 and 400 K that have been identified as the α-, β- and γ-relaxation processes. A difference of about two orders of magnitude between the characteristic rates of the γ-relaxation is the main feature observed in the dielectric response. However, the β-relaxation shows very similar behavior for both series. The differences in the relaxation behavior in the solid state are interpreted on the basis of the rotational barriers deduced from the model calculation results. © 1997 John Wiley & Sons, Inc.  相似文献   

14.
Fluoro‐terminated hyperbranched poly(ether ketone) (FHPEK) was synthesized and its end groups were modified with alkyl compounds of different chain lengths, i.e., hexyloxy (C6), dodecyloxy (C12), and octadecyloxy, (C18), to produce alkyl‐modified HPEKs (HPEK‐C6, HPEK‐C12, and HPEK‐C18, respectively). Master curves were constructed by using the time‐temperature superposition principle. The horizontal shift factors, aT, used for the construction of the master curves were fit using the William‐Landel‐Ferry (WLF) equation. From the fitting parameters, the apparent activation energy, Ea, was estimated. With increasing alkyl chain length, the Ea values were found to decrease in the order FHPEK > HPEK‐C6 > HPEK‐C12, and then increase for HPEK‐C18. The average relaxation time, τHN, was determined by fitting of the dynamic moduli G′(ω) and G″(ω) to the empirical Havriliak‐Negami equation. Similarly, the τHN values decreased in the order of FHPEK > HPEK‐C6 > HPEK‐C12, and then increased for HPEK‐C18. This indicates that the endgroup modification with short alkyl chains (C6, C12) increased the molecular mobility due to the internal plasticization effect of these alkyl chains. Modification with the longer alkyl chain (C18) retarded the molecular motion through an antiplasticization effect caused by summation of nonpolar hydrophobic interactions between long hydrocarbon chains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2079–2089, 2008  相似文献   

15.
This work reports the mechanical and dielectric relaxation spectra of three difluorinated phenyl isomers of poly(benzyl methacrylate), specifically, poly(2,4‐difluorobenzyl methacrylate), poly(2,5‐difluorobenzyl methacrylate) and poly(2,6‐difluorobenzyl methacrylate). The strength of the dielectric glass–rubber relaxation of the 2,6 difluorinated phenyl isomer is, respectively, nearly three and two times larger than the strengths of the 2,5 and 2,4 isomers. The 2,4 isomer presents a mechanical α peak the intensity of which is nearly two times that of the other two isomers. Both the mechanical and dielectric relaxation spectra display a subglass process, called γ relaxation, centered in the vicinity of −50 °C at 1 Hz and, in some cases, a subglass β absorption is detected at higher temperature partially masked by the glass–rubber relaxation. The mean‐square dipole moments per repeating unit, 〈μ2〉/x, measured at 25 °C in benzene solutions, are 2.5 D2, 1.9 D2, and 5.0 D2 for poly(2,4‐difluorobenzyl methacrylate), poly(2,5‐difluorobenzyl methacrylate) and poly(2,6‐difluorobenzyl methacrylate), respectively. These results, in conjunction with Onsager type equations, permit to conclude that auto and cross‐correlation contributions to the dipolar correlation coefficient may have the same time‐dependence. On the other hand, dipole intermolecular interactions, rather than differences in the flexibility of the chains, seem to be responsible for the relatively high calorimetric glass‐transition temperature of the 2,6 diphenyl isomer, which is, respectively, nearly 36 °C and 32 °C above the Tg's of the 2,4 and 2,5 isomers. Molecular Mechanics calculations give a good account of the differences observed in the polarity of the polymers. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2179–2188, 2000  相似文献   

16.
Dielectric relaxations of several poly(diitaconate)s with cyclobutyl, cycloheptyl, and cyclooctyl groups in the side chain were investigated. The study was performed by determining the dielectric permittivity and loss, depending on the frequency and temperature. Dynamic dielectric measurements indicated several relaxations according to the chemical structure of the polymers. The dielectric behavior of these polymers was compared with those of poly(dicyclohexyl itaconate), previously reported. The α relaxations were analyzed with the Havriliak–Negami equation. Significant differences in the subglass relaxations were observed. A tentative explanation of the molecular origin of each absorption was proposed in terms of the number of carbon atoms of the ring and their conformational versatility. Strong conductive processes were observed in these polymers at low frequencies and high temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1059–1069, 2003  相似文献   

17.
In this work we investigate by means of dielectric relaxation spectroscopy how segmental motions occurring in poly(vinyl chloride) (PVC) are modified by blending of PVC with small amounts of two different homopolymers: crystalline poly(ϵ‐caprolactone) (PCL) and glassy syndiotactic poly(methylmethacrylate) (sPMMA). The dynamics of the α relaxation of PVC is severely changed by blending it with PCL or sPMMA becoming faster or slower, respectively. Simultaneously, the shape of the relaxation function is being importantly altered. It shows a stronger non‐Debye character being broader and strongly temperature‐dependent. This fact leads us to calculate distributions of relaxation times for the blends that are wider in comparison to the one obtained for pure PVC. Complementary X‐ray diffraction measurements have been performed in order to assure the absence of crystallinity in the blends, and some small variations can be deduced at the level of interchain structural correlations of PVC. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 234–247, 2000  相似文献   

18.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) graft copolymers (PSXE-g-PMMA) were prepared by condensation reaction of poly(methylphenylsiloxane)-containing epoxy resin (PSXE) with carboxyl-terminated poly(methyl methacrylate) (PMMA), and they were characterized by gel permeation chromatography (GPC), infrared (IR), and 29Si and 13C nuclear magnetic resonance (NMR). The microstructure of the PSXE-g-PMMA graft copolymer was investigated by proton spin–spin relaxation T2 measurements. The thermal stability and apparent activation energy for thermal degradation of these copolymers were studied by thermogravimetry and compared with unmodified PMMA. The incorporation of poly(methylphenylsiloxane) segments in graft copolymers improved thermal stability of PMMA and enhanced the activation energy for thermal degradation of PMMA. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. A Polym. Chem. 36: 2521–2530, 1998  相似文献   

19.
Poly(methylphenylsiloxane)–poly(methyl methacrylate) interpenetrating polymer networks (PMPS–PMMA IPNs) were prepared by in situ sequential condensation of poly(methylphenylsiloxane) with tetramethyl orthosilicate and polymerization of methyl methacrylate. PMPS–PMMA IPNs were characterized by infrared (IR), differential scanning calorimetry (DSC), and 29Si and 13C nuclear magnetic resonance (NMR). The mobility of PMPS segments in IPNs, investigated by proton spin–spin relaxation T2 measurements, is seriously restricted. The PMPS networks have influence on the average activation energy Ea,av of MMA segments in thermal degradation at initial conversion. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1717–1724, 1999  相似文献   

20.
The free volume and related mobility properties of substituted poly(p-phenylene) polymers are examined. The techniques used range from positron annihilation, dielectric relaxation, and dynamic mechanical spectroscopy to thermally stimulated currents. Fractional free volume is determined for the samples with different substituted side groups and related to the glass transition temperature. Bulkier groups lead to a greater fractional free volume and lower glass transition temperatures. Comparison of molecular relaxation times using the different characterization techniques demonstrates that there is strong coupling between motion of the main chain and the side groups, on which the dipoles reside. Intermolecular coupling between the main chains at the primary relaxation is shown in this work to be related to the nature of the side chains and resultant free volume, as are the temperature locations of local, secondary relaxations. A qualitative model describing the effect of regiochemistry on the motions and packing of these materials is also proposed. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1465–1481, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号