首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The O2–N2 and O2–Ar negative-ion chemical ionization mass spectra of aromatic amines show a series of unusual ions dominated by an addition appearing at [M + 14]. Other ions are observed at [M – 12], [M + 5], [M + 12], [M + 28] and [M + 30]. Ion formation was studied using a quadrupole instrument equipped with a conventional chemical ionization source and a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. These studies, which included the examination of ion chromatograms, measurement of positive-ion chemical ionization mass spectra, variation of ion source temperature and pressure and experiments with 18O2, indicate that the [M + 14] ion is formed by the electron-capture ionization of analytes altered by surfaceassisted reactions involving oxygen. This conversion is also observed under low-pressure conditions following source pretreatment with O2. Experiments with [15N]aniline, [2,3,4,5,6-2H5] aniline and [13C6]aniline show that the [M + 14] ion corresponds to [M + O ? 2H], resulting from conversion of the amino group to a nitroso group. Additional ions in the spectra of aromatic amines also result from surface-assisted oxidation reactions, including oxidation of the amino group to a nitro group, oxidation and cleavage of the aromatic ring and, at higher analyte concentrations, intermolecular oxidation reactions.  相似文献   

2.
The competitive formation of molecular ions M and protonated molecules [M + H]+ under fast atom bombardment (FAB) conditions was examined using various kinds of organic compounds. The use of protic/hydrophilic matrices such as thioglycerol and glycerol resulted in relatively large values of the peak intensity ratio I([M + H]+)/I(M) compared with the use of relatively aprotic/hydrophobic matrices such as m-nitrobenzyl alcohol and o-nitrophenyl octyl ether. The change of matrix from thiol-containing such as thioglycerol and dithiothreitol to alcoholic such as glycerol and pentamethylene glycol increased the I([M + H]+)/I(M) ratio. Furthermore, the change of matrix increased the peak intensity ratio of the doubly charged ion [M + 2H]2+ to [M + H]+ in the FAB mass spectra of angiotensin I and gramicidin S. The addition of acids to the matrix solution increased the I([M + H]+)/I(M) ratio, although such an effect did not always occur. The acetylation of simple aniline compounds markedly increased the I([M + H]+)/I(M) ratio. It was concluded from these results that the hydrogen bonding interaction between hydroxyl groups(s) of the matrix and basic site(s) of analyte molecules in solution acts advantageously as a quasi-preformed state for [M + H]+ formation, and that the presence of significant proton acceptor(s) such as carbonyl group in analytes hinder the M formation which may generally occur under FAB conditions. The formation of M and [M + H]+ ions seemed to occur competitively, reflecting or according to the interaction or solvation states between the analyte and matrix molecules in solution and the structural characteristics of the analytes.  相似文献   

3.
4.
Field ionization kinetic experiments in conjunction with deuterium labelling have been shown that the molecular ions of 3-phenylpropanol with lifetimes as short as 10?11s lose a molecule of water via a specific 1,3 elimination. At times > 10?11s two distinct hydrogen interchange processes in the molecular ions appear to complete with this reaction. One of the intechange processes involves the benzylic and hydroxylic hydrogen atoms and starts to complete with the elimination of water at shorter molecular ion lifetimes than the other interchange process in which the ortho hydrogen atoms also participate. Decomposing [C9H10] ions generated by elimination of water from the molecular ions of 3-phenylpropanol or by direct ionization of various isomeric C9H10 compounds could not be distinguished adequately, illustrating isomerization either to a common ion structure or to a set of ions with rapidly interconverting structures. A consideration of the energetics of the elimination of water from 3-phenylpropanol suggests that at threshold energies 1-phenylpropene or indane type structures can be formed. Arguments for the latter have been obtained from the observation that a labile fluorine atom is present in the [M – H2O] ions generated from 3-pentafluoro-phenylpropanol.  相似文献   

5.
Methyl 2-oxocycIoalkane carboxylate structures are proposed lor the [M ? MeOH] ions from dimethyl adipate, pimelate, suberate and azelate. This proposal is based on a comparison of the metastable ion mass spectra and the kinetic energy releases for the major fragmentation reaction of these species with the same data for the molecular ions of authentic cyclic β-keto esters. The mass spectra of α,α,α′,α′-d4-pimelic acid and its dimethyl ester indicate that the α-hydrogens are involved only to a minor extent in the formation of [M ? ROH] and [M ? 2ROH] ions, while these α-hydrogens are involved almost exclusively in the loss of ROH from the [M ? RO˙]+ ions (R = H or CH3). The molecules XCO(CH2)7COOMe (X = OH, Cl) form abundant ions in their mass spectra with the same structure as the [M ? 2MeOH] ions from dimethyl azelate.  相似文献   

6.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

7.
The potential energy surface for the [CH5N] system has been investigated using ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence-electron correlation. Two [CH5N] isomers can be distinguished: the well known methylamine radical cation, [CH3NH2], and the less familiar methylenammonium radical cation, [CH2NH3]. The latter is calculated to lie 8 kJ mol?1 lower in energy. A substantial barrier (176 kJ mol?1) is predicted for rearrangement of [CH2NH3] to [CH3NH2]. In addition, a large barrier (202 kJ mol?1) is found for loss of a hydrogen radical from [CH2NH3] via direct N—H bond cleavage to give the aminomethyl cation [CH2NH2]+. These results are consistent with the existence of the methylenammonium ion [CH2NH3] as a stable observable species. The barrier to loss of a hydrogen radical from [CH3NH2] is calculated to be 140 kJ mol?1.  相似文献   

8.
The unimolecular fragmentations of [M + H]+ and [M – H]? ions from four 2-aryl-2-methyl-1,3-dithianes are described and clarified with the aid of deuterated derivatives. Comparison of the MIKE spectra of [M + H]+ species obtained under chemical ionization and fast atom bombardment (FAB) conditions reveals differences which are attributed to the different energetics involved in the two ionization processes. It is suggested that FAB is a ‘softer’ ionization technique but, at the same time, it provides, for the possibility of solvation, reaction sites not available in gas-phase protonation. [M – H]? species and anionic fragments thereof were generally not obtained under FAB(?) conditions. [M – H]? ions are readily produced in gas-phase reactions with OH? via proton abstraction from C(4) or C(5), and from the 2-methyl substituent; and they fragment according to several reaction pathways.  相似文献   

9.
The extent of isomerization of [C9H10] ions, with lifetimes of approximately 10?11 and 10?6 s has been investigated using field ionization, collisionally activated dissociation and charge stripping techniques. The [C9H10] ions which were investigated included the molecular ions of α-methylstyrene, β-methylstyrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, indan, cyclopropylbenzene, allylbenzene and the product of water loss from 3-phenylpropanol. The field ionization spectra of all the C9H10 hydrocarbons were different indicating that isomerization to a common ion structure had not occurred to a measurable extent for ions with lifetimes of approximately 10?11 s. Collisionally activated dissociation and charge stripping results indicated that most of the [C9H10] ions continued to maintain unique ion structures (or mixtures of structures) at ion lifetimes of 10?6 s. Possible exceptions are the [C9H10] ions from allylbenzene and cyclopropylbenzene which gave indistinguishable collisionally activated dissociation and charge stripping spectra.  相似文献   

10.
Collisional activation spectra were used to characterize isomeric ion structures for [CH5P] and [C2H7P] radical cations and [C2H6P]+ even-electron ions. Apart from ionized methylphosphane, [CH3PH2], ions of structure [CH2PH3] appear to be stable in the gas phase. Among the isomeric [C2H7P] ions stable ion structures [CH2PH2CH3] and [CH2CH2PH3]/[CH3CHPH3] are proposed as being generated by appropriate dissociative ionization reactions of alkyl phosphanes. At least three isomeric [C2H6]+ ions appear to exist, of which \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CH}_{\rm 3} - \mathop {\rm P}\limits^{\rm + } {\rm H = CH}_{\rm 2} $\end{document} could be identified positively.  相似文献   

11.
Two monometayl- and four dimethyl-triazolocoumarin isomers were characterized by their electron impact mass spectra and by low-energy collision experiments performed on molecular ions M+˙ and other fragment ions with an ion-trap mass spectrometer. High-energy collision-activated dissociation measurements were performed on the protonated [M + H]+ and deprotonated [M ? H]? molecular ion obtained by fast atom bombardment and M+˙ species produced by electron impact ionization on a double-focusing, reverse-geometry instrument. The data obtained allowed unequivocal structural identification of all the compounds investigated.  相似文献   

12.
By combining results from a variety of mass spectrometric techniques (metastatle ion, collisional activation, collision-induced dissociative ionization, neutralization–reionization spectrometry and appearance energy measurements) and the classical method of isotopic labelling, a unified mechanism is proposed for the complex unimolecular chemistry of ionized 1,2-propanediol. The key intermediates involved are the stable hydrogen-bridged radical cations [CH2?C(H)? H…?O…?O(H)CH3]+˙, which were generated independently from [4-methoxy, 1-butanol]+˙ (loss of C2H4) and [1-methoxyglycerol]+˙ (loss of CH2O), [CH3? C?O…?H…?O(H)CH3]+˙ and the related ion-dipole complex [CH2?C(OH)CH3/H2O]+˙. The latter species serves as the precursor for the loss of CH3˙ and in this reaction the same non-ergodic behaviour is observed as in the loss of CH3˙ from the ionized enol of acetone.  相似文献   

13.
The collision induced dissociation/mass analysed ion kinetic energy mass spectra of 2,5-diphenyltetrazole demonstrate the decay sequence [diphenyltetrazole]→ [diphenylnitrile imine]m/z 91. The m/z 91 ion was shown to be identical to the ion formed by loss of N2 from the phenyl azide radical cation, thus suggesting the phenylnitrene structure for the m/z 91 ion.  相似文献   

14.
The methane negative ion chemical ionization (NICI) mass spectra of polycyclic aromatic hydrocarbons are usually dominated by molecular, M? ˙ or M ? H? ions; however, ions resulting from additions to M have also been reported. Some of these ions have been observed at [M + 14]? ˙, [M + 15]?, [M + 30]? and [M + 32]?˙ and have been attributed to reactions with either oxygen-containing impurities in the buffer gas or alkyl radical species generated by ionization of a hydrocarbon buffer gas. In this study, the NICI spectra of fluorene, anthracene and fluoranthene were studied in detail using quadrupole and Fourier transform mass spectrometers. Spectra were acquired when reactive species such as oxygen, water, nitrous oxide and carbon dioxide were added to the nitrogen buffer gas. Experiments with deuterated methane were also carried out. These studies indicated that buffer gas impurities affect the NICI spectra; however, gas-phase ion-molecule reactions were not responsible for all of the observed products. In addition to electron- and ion-molecule reactions, ions were observed that resulted from wall-catalyzed oxidation reactions followed by electron capture. These reactions were enhanced by the addition of oxygen and elevated ion source temperatures. Depending upon the parent PAH structure, oxidation products such as ketones, quinones and anhydrides were formed.  相似文献   

15.
A procedure to calculate the quantum mechanical transition probability of a unimolecular primary chemical process, A?A + e? is investigated for the circumstance where A? and A have different numbers of vibrational and rotational degrees of freedom (one is linear, the other not). A procedure is introduced to deal with the coupling between the vibrational and rotational motions. The proposed method was applied to calculating the lifetimes of CO2˙? and N2O˙? in the gas phase. The geometry optimizations and frequency calculations for CO2, CO2˙?, N2O, and N2O˙? are performed at HF, MP2, and QCISD(T) levels with 6-31G* or 6–31+G* basis sets, in order to obtain reliable geometric and spectroscopic information on these systems. Lifetimes are calculated for several of the lower vibrational–rotational states of the anions, as well as for the Boltzmann distribution of states at 298 K. The lifetime of the lowest vibrational–rotational state of CO2˙?, is 1.03 × 10?4 s, and of the lowest vibrational state with rotational levels weighted by Boltzmann distribution at 298 K, 1.50 × 10?4 s. These values are in good agreement with the experimental number, 9.0 ± 2.0 × 10?5 s, and support the experimental evidence that CO2˙? was formed in its ground vibrational level by the techniques used. The lifetime of CO2˙? calculated with Boltzmann distribution over its vibrational and rotational levels at 298 K, is 1.51 × 10?5 s. There are no direct measurements of the lifetime of N2O˙?, but it was estimated to be greater than 10?4 s from experimental evidence. The predicted lifetimes of N2O˙?, at its lowest vibrational–rotational state (0 K) and lowest vibrational state with rotational levels weighted by the Boltzmann distribution at 298 K, are 238 and 19.1 s, respectively. The lifetime of N2O˙? at thermal equilibrium at 298 K is 6.66 × 10?2 s, indicating that electron loss from the excited vibrational states of N2O˙? is significant. This study represents the first theoretical investigation of CO2˙? and N2O˙? lifetimes. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
The ammonia chemical ionization desorption spectra of N,N-dimethyl quaternary ammonium iodides in addition to high protonated molecular ion [M + H]+ intensity, show signals for an ion radical composed of N-methyl abstracted salt cation and ammonia [C + NH3? CH3]. These ions corresponding to the cation +2 show increased importance in the chemical ionization mode, using the same reagent gas. The technique of chemical ionization desorption appears suitable for the analysis of salts, and thus for the determination of the molecular weight of both anion and cation.  相似文献   

17.
The collision-induced decompositions of the [M – H]? and [M + Li]+ ions of a few dinucleoside phenylphosphonates were studied using fast atom bombardment and linked scanning at constant B/E. Deprotonation takes place on the base or sugar moieties. The [M – H]? ion decomposes mainly by cleavage on either side of the phosphonate linkage, leading to the formation of mononucleotide fragment ions and also by cleavage of the basesugar bond. Rupture of the 3′-phosphonate bond is preferred. Unlike the normal charged nucleotides, these neutral nucleotides do not eliminate a neutral base from the [M – H]? ion. However, the mononucleotide fragment ions which can have the charge on the phosphorus oxygen eliminate neutral bases by charge-remote fragmentation. The 4,4′-dimethoxytrityl (DMT)-protected nucleotides show the additional fragmentation of loss of DMT. Li+ attachment can occur at several sites in the molecule. As observed for the [M – H]? ion, the major cleavage occurs on either side of the phosphonate bond in the fully deprotected nucleotides, cleavage of the ester bond on C(3′) being preferred. Cleavage of the 5′-phosphonate bond is not observed in the DMT-protected nucleotides. Many of the fragmentations observed can be explained as arising from charge-remote reactions.  相似文献   

18.
The isomeric ions [H2NC(H)O]+˙, [H2NCOH]+˙, [H3CNO]+˙ and [H2CNOH]+˙ were examined in the gas phase by mass spectrometry. Ab initio molecular orbital theory was used to calculate the relative stabilities of [H2NC(H)O]+˙, [H2NCOH]+˙, [H3NCO]+˙ and their neutral counterparts. Theory predicted [H2NC(H)O]+˙ to be the most stable ion. [H2NCOH]+˙ ions were generated via a 1,4-hydrogen transfer in [H2NC(O)OCH3]+˙, [H2NC(O)C(O)OH]+˙ and [H2NC(O)CH2CH3]+˙. Its metastable dissociation takes place via [H3NCO]+˙ with the isomerization as the rate-determining step. [H2CNOH]+˙ undergoes a rate-determining isomerization into [H3CNO]+˙ prior to metastable fragmentation. Neutralization-reionization mass spectrometry was used to identify the neutral counterparts of these [H3,C,N,O]+˙ ions as stable species in the gas phase. The ion [H3NCO]+˙ was not independently generated in these experiments; its neutral counterpart was predicted by theory to be only weakly bound.  相似文献   

19.
The structure and formation of [C8H8O]+. ions generated from phenylcyclopropylcarbinol and 1-phenyl-1-hydroxymethylcyclopropane upon electron impact, have been studied using kinetic energy release measurements, by determination of ionization and appearance energies and by collisional activation. It is shown that the non-decomposing [C8H8O] ions have exclusively the structure of the enol ion of phenylacetaldehyde, although it is less stable than the enol ion of acetophenone by about 45 kJ mol?1. This has been interpreted as an indication that the [C8H8O] ions from phenylcyclopropylcarbinol are formed by an attack of either the phenyl ring or the hydroxyl group upon the C-1? C-2 (or C-1? C-3) bond of the cyclopropane ring under a simultaneous expulsion of ethene and migration of the attacking group to the C-1 position. The [C8H8O] ion from 1-phenyl-1-(hydroxymethyl)cyclopropane is formed by opening of the cyclopropane ring via a benzylic cleavage. A kinetically controlled hydrogen shift in the resulting ring opened ion prior to or during ethene loss then leads to the formation of [C8H8O] ions which have the structure of the enol ion of phenylacetaldehyde.  相似文献   

20.
Unstable 2-hydroxpropene was prepared by retro-Diels-Alder decomposition of 5-exo-methyl-5-norbornenol at 800°C/2 × 10?6 Torr. The ionization energy of 2-hydroxypropene was measured as 8.67±0.05 eV. Formation of [C2H3O]+ and [CH3]+ ions originating from different parts of the parent ion was examined by means of 13C and deuterium labelling. Threshold-energy [H2C?C(OH)? CH3] ions decompose to CH3CO++CH3˙ with appearance energy AE(CH3CO+) = 11.03 ± 0.03 eV. Higher energy ions also form CH2?C?OH+ + CH3 with appearance energy AE(CH2?C?OH+) = 12.2–12.3 eV. The fragmentation competes with hydrogen migration between C(1) and C(3) in the parent ion. [C2H3O]+ ions containing the original methyl group and [CH3]+ ions incorporating the former methylene and the hydroxyl hydrogen atom are formed preferentially, compared with their corresponding counterparts. This behaviour is due to rate-determining isomerization [H2C?C(OH)? CH3] →[CH3COCH3], followed by asymmetrical fragmentation of the latter ions. Effects of internal energy and isotope substitution are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号