首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new molecular complex of fullerene with tetramethyltetraselenafulvalene (TMTSF), C60·TMTSF·2CS2, (1) was synthesized. The structure and composition of the complex were established by X-ray diffraction analysis. The crystals of C60·C10H12Se4·2CS2 are monoclinic:a=15.407(2),b=12.934(2),c=12.026(2) Å β=108.39(3)°,V=2274.1(6) Å3, space groupCm, Z=2,d calc=1.929 g cm?3,R=0.047. The crystal structure of 1 consists of layers. Layers formed by fullerene and CS2 molecules alternate with layers of TMTSF molecules. Peculiarities of the crystal structure of 1 are the nonplanar conformation of TMTSF molecules and the absence of shortened C…C contacts between adjacent fullerenes molecules. The energy of intermolecular TMTSF…C60 interactions in the crystal was estimated.  相似文献   

2.
This paper presents measurements of the ionic conductivity in single crystals of β″-alumina (0.84 M2O · 0.67 MgO · 5.2 Al2O3, M = Na, K, Ag). Single crystals of sodium β″-alumina were grown from a melt of Na2O, MgO, and Al2O3 at 1660 to 1730°C. Selected crystals were converted to the other isomorphs by ion exchange. The conductivity of sodium β″-alumina varies from 0.18 to 0.01 (ohm · cm)?1 at 25°C depending upon crystal growth conditions. Potassium β″-alumina has the unusually high room temperature conductivity of 0.13 (ohm · cm)?1. Silver β″-alumina has a slightly lower conductivity, 4 × 10?3 (ohm · cm)?1 at 25°C. The activation energies of sodium and potassium β″-alumina decrease with increasing temperature, while that of silver β″-alumina is constant from ?80 to 450°C.  相似文献   

3.
The molecular structure of Ph3CSSC(S)SCPh3 · CS2 has been determined by X-ray structural analysis. The substance crystallizes in the triclinic crystal system [a = 884.9(2) pm, b = 1 039.5(2) pm, c = 2 064.6(3) pm, α = 75.86(1)°, β = 79.83(2)°, γ = 77.31(5)°, Z = 2, space group P1 ]. The CS3 group is planar; the S? S-bond (201.4 pm) forms an angle of 5.7° with the CS3 plane. The torsional angle CSSC equals 96.3°. (Ph3C)2CS4 was obtained by reaction of TosNSCl2 (Tos = p-MeC6H4SO2) with Ph3CSH in CS2 in the presence of triethylamine. The reaction mechanism is discussed.  相似文献   

4.
Pyrolytic decay of carbon diselenide was monitored by ultraviolet absorption spectroscopy in reflected shock waves in the temperature range of 1600–2600°K. The temperature dependence of the absorption coefficient of CSe2 at 2308 Å was determined and was used to provide kinetic information along with a deconvolution procedure which accounted for and removed systematic distortions of the fast time-resolved absorbance profile. For temperatures of 1600–2600°K and argon densities of 1.5–7.0 × 10?5 mol/cm3 dilute (1.0–9.0 × 10?9 mol/cm3) CSe2 pyrolyzed with measured first-order decay rates in the range of log10 k1 (sec?1) = 3.0?5.7; at midrange (2100°K and 4.3 × 10?5 mol/cm3 in Ar) k1 ≈ 3 × 104 sec?1. The decay probably occurs via a unimolecular low-pressure process, first order in both CSe2 and Ar, for which k2 ± 109 cm3/mol·sec at 2100°K. The deconvoluted data yield Arrhenius activation energies of 53.2 kcal/mol under second-order treatment, but the activation energy is less reliable than the general magnitude of the rate constant. A comparison of CSe2 with other molecules which are isoelectronic in their valence shells (CO2, CS2, OCS, and N2O) is made.  相似文献   

5.
Solid solutions based on cesium monogallate CsGaO2 are synthesized in the Ga2O3-TiO2-Cs2O system. Their crystalline structure and also temperature and concentration conductivity dependences are studied. The cesium cation character of conductivity is confirmed. The most conducting samples contain an excess of cesium oxide and have the structure of high-temperature γ-modification of KAlO2. Their specific conductivity is (5.0–6.7) × 10?3 S cm?1 at 400 °C, (2.5–5.0) × 10?2 S cm?1 at 700°C at the activation energy of 33–35 kJ/mol?1.  相似文献   

6.
CS radicals have been produced by photodissociation of CS2 at 193 nm and their disappearance monitored by LIF. The vibrationally excited CS radicals rapidly relax to CS(ν = 0). At 298 K, the rate coefficients for CS(ν = 0) reactions with O2, O3 and NO2 are (2.9 ± 0.4) × 10?19, (3.0 ± 0.4) × 10?16 and (7.6 ± 1.1) × 10?17 cm3 molecule?1 s?1 respectively. The quenching of CS(A 1II)ν=0 by He has a rate coefficient of (1.3 ± 0.2) × 10?12 cm3 molecule?1 s?1.  相似文献   

7.
Rate constants for the reaction of OH radicals with OCS and CS2 have been determined at 296 K using the flash photolysis resonance fluorescence technique. The values derived from this study are kOH + OCS = (5.66 ± 1.21) × 10?14 cm3 molecule?1 s?1 and kOH + CS2 = (1.85 ± 0.34) × 10?13 cm3 molecule?1 s?1, where the uncertainties are 95% confidence limits making allowance for possible systematic errors.  相似文献   

8.
Solid solutions based on rubidium monogallate RbGaO2 with a general formula Rb2?2x Ga2?x A x O4 (A = P, V, Nb, and Ta) are synthesized. Their crystal structure and temperature and concentration dependences of conductivity are studied. The highest rubidium-cationic conductivity is (1.8–3.9) × 10?3 S cm?1 at 400°C and (1.4–2.1) × 10?2 S cm?1 at 700°C. These results are compared with the data for rubidium monogallate doped with four-charged cations and solid solutions based on RbAlO2.  相似文献   

9.
The compound 1-(N-morpholiniomethyl)spirobi(3-oxo-2,5-dioxa-1-silacyclopentan)ate crystallizes from aqueous solution of γ-butyrolactone in the form of two crystal hydrate modifications: monoclinic (with D = 1.53 g/cm3, space group P 21/n) and triclinic (D = 1.45 g/cm3, space group P1-). For the monoclinic form, an X-ray structural study at -100°C has been performed. For both structures the coordination polyhedron of the silicon atom is a trigonal bipyramid. In the crystal structures there are strong intermolecular hydrogen bonds of NH···O and OH···O types.  相似文献   

10.
The electrical conductivity and departure from the stoichiometry of Nd2O3 have been measured over the temperature range of 900° to 1100°C and oxygen partial pressure of 1 to 10?16 atm. The hole conductivity of Nd2O3 is found to be proportional to P1nO2, where n are 4.6, 4.9, and 5.1 at 900°, 1000°, and 1100°C, respectively. From the oxygen partial pressure dependence of the hole conductivity, it is shown that the predominant point defects in nonstoichiometric NdO1·+x are fully ionized and partially doubly ionized metal vacancies. From the thermogravimetric measurements, the departure from stoichiometry, x in NdO1·5+x, is 2.0 × 10?3 at 1000°C and 1 atm. By combining the electrical conductivity and weight change data, it is shown that the hole mobility is 6.3 × 10?4 (cm2/V·sec) at 1000°C and 1 atm.  相似文献   

11.
The Crystal Structure of Me3SiI · β-Picoline and Me3SiI · γ-Picoline A Comparison between the Lewis-Bases Pyridine, β-Picoline, and γ-Picoline The reaction of Iodinetrimethylsilane with β- und γ-Picoline (Pic) leads to solid 1 : 1 compounds Me3SiI · β-Picoline 1 , Me3SiI · γ-Picoline 2. The reaction was performed at room temperature. Yellow single crystals were obtained by sublimation. Single crystal X-ray investigations confirm that both compounds are ionic [Me3SiPic]+I?. The comparison of β-Picoline with γ-Picoline and Pyridine (Py) demonstrates that the presence of a methyl group and also its position has no significant influence on the Si? N bond length in compound 1, 2 and on the adduct Me3SiI · Py.  相似文献   

12.
刘佩芳  文利柏 《中国化学》1998,16(3):234-242
The mass transport and charge transfer kinetics of ozone reduction at Nafion coated Au electrodes were studied in 0.5 mol/L H2SO4 and highly resistive solutions such as distilled water and tap water. The diffusion coefficient and partition coefficient of ozone in Nafion coating are 1.78×10-6 cm2·s-1 and 2.75 at 25℃ (based on dry state thickness), respectively. The heterogeneous rate constants and Tafel slopes for ozone reduction at bare Au are 4.1×10-6 cm·s-1, 1.0×10-6 cm·s-1 and 181 mV, 207 mV in 0.5 mol/L H2SO4 and distilled water respectively and the corresponding values for Nafion coated Au are 5.5×10-6 cm·s-1, 1.1×10-6 cm·s-1 and 182 mV, 168 mV respectively. The Au microelectrode with 3 μm Nafion coating shows good linearity over the range 0-10 mmol/L ozone in distilled water with sensitivity 61 μA·ppm-1 ·cm-2, detection limit 10 ppb and 95% response time below 5 s at 25℃. The temperature coefficient in range of 11-30℃ is 1.3%.  相似文献   

13.
The rate constants of gas-phase reactions of the hydroxyl radical with β-dimethylstyrene and acetone have been determined by a relative method at 298 K. The values obtained are β-dimethylstyrene (3.3 ± 0.5) × 10?11 cm3/molecule·s and acetone (6.6 ± 0.9) × 10?13 cm3/molecule·s. A simplified kinetic treatment of the experimental data shows that β-dimethylstyrene is stoichiometrically converted to benzaldehyde and acetone. In the photooxidation study of benzaldehyde, carbon dioxide was the only detected product. The ratio between carbon dioxide produced and benzaldehyde reacted was ≥1.  相似文献   

14.
One μ‐alkoxo‐μ‐carboxylato bridged dinuclear copper(II) complex, [Cu2(L1)(μ‐C6H5CO2)] ( 1 )(H3L1 = 1,3‐bis(salicylideneamino)‐2‐propanol)), and two μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear copper(II) complexes, [Cu4(L1)2(μ‐C8H10O4)(DMF)2]·H2O ( 2 ) and [Cu4(L2)2(μ‐C5H6O4]·2H2O·2CH3CN ( 3 ) (H3L2 = 1,3‐bis(5‐bromo‐salicylideneamino)‐2‐propanol)) have been prepared and characterized. The single crystal X‐ray analysis shows that the structure of complex 1 is dimeric with two adjacent copper(II) atoms bridged by μ‐alkoxo‐μ‐carboxylato ligands where the Cu···Cu distances and Cu‐O(alkoxo)‐Cu angles are 3.5 11 Å and 132.8°, respectively. Complexes 2 and 3 consist of a μ‐alkoxo‐μ‐dicarboxylato doubly‐bridged tetranuclear Cu(II) complex with mean Cu‐Cu distances and Cu‐O‐Cu angles of 3.092 Å and 104.2° for 2 and 3.486 Å and 129.9° for 3 , respectively. Magnetic measurements reveal that 1 is strong antiferromagnetically coupled with 2J =‐210 cm?1 while 2 and 3 exhibit ferromagnetic coupling with 2J = 126 cm?1 and 82 cm?1 (averaged), respectively. The 2J values of 1–3 are correlated to dihedral angles and the Cu‐O‐Cu angles. Dependence of the pH at 25 °C on the reaction rate of oxidation of 3,5‐di‐tert‐butylcatechol (3,5‐DTBC) to the corresponding quinone (3,5‐DTBQ) catalyzed by 1–3 was studied. Complexes 1–3 exhibit catecholase‐like active at above pH 8 and 25 °C for oxidation of 3,5‐di‐tert‐butylcatechol.  相似文献   

15.
Density, Conductivity, and Electrolysis of Liquid Phases in Nonaqueous Systems of the Type MCl/AlCl3/SO2 (M = Li, Na) The temperature dependence of the density and specific conductivity was determined at liquid phases of the composition MAlCl4 · nSO2 + mAlCl3 (M = Li, n = 3–5.5, m = 0.266; M = Na, n = 1.36–4.56, m = 0.01–0.1). The investigated range was between ?30°C and +45°C. For different compositions it was limited by the liquidus point and by the point, where the SO2-equilibrium pressure surpassed 1 bar. The densities are between 1.63 and 1.76 g/cm3, the specific conductivities between 0.03 and 0.07 Ω?1 · cm?1. In diluted solutions below ?10°C NaAlCl4 behaves as a strong electrolyte in which dissociation in Na+ and AlCl4?is prevailing. By electrolysis of the liquid phases at room temperature reversible galvanic cells of the type M/MAlCl4 · nSO2/Cl2, C(M = Li, Na) are generated, which have an open circuit potential between 4.12 and 4.18 volts. The alkali metal deposits are stable in contact with the electrolyte up to 60°C in the case of lithium and 35°C with sodium.  相似文献   

16.
The asymmetric lactone (3 S, 4 R)-3-methyl-4-benzyloxycarbonyl-2-oxetanone ( 6 ) was anionically polymerized to give an insoluble, crystalline, highly isotactic polymer with (2 S, 3 S)-benzyl β-3-methylmalate repeating units. Solubility was achieved by copolymerization of 6 with the recemic (R, S)-butyl malolactonate ( 7 ). The semicrystalline copolymer was characterized (M̄n = 107 000, Tg = 29,6°C, Tm = 161°C, [α] = 1,5 deg · dm−1 · g−1 · cm3) and its stereosequence investigated by 13C NMR.  相似文献   

17.
The crystal and molecular structure of [diethylbis(1-pyrazolyl)borato]methyl(1-phenylpropyne)platinum(II), ([(C2H5)2B(N2C3H3)2](CH3)Pt(C6H5CCCH3)), has been determined by a single crystal X-ray diffraction study using diffractometer techniques. The compound crystallizes in the monoclinic space group P21/c with a = 13.239(6), b = 11.077(5), c = 15.619)7) Å and β = 114.53(2)°. The observed density of 1.71(2) g cm?3 agrees well with the calculated value, 1.687 g cm?3, assuming four molecules in the cell. A conventional agreement factor of 0.036 was obtained by least-squares refinement on F using 3289 observations and 194 variables. The coordination about the platinum atom is square planar, if the acetylene is assumed to occupy one coordination site. The substituents of the acetylene are cis-bent away from the Pt atom, the methyl substituent by 17.7(1.0)°, and the phenyl substituent by 21.2(9)°. The coordinated triple bond length is 1.227(10) Å. These results indicate that the acetylene is moderately perturbed on coordination, consistent with the observation that Δν(CC) is 211 cm?1. The conformation of the ring formed by the bidentate polypyrazolylborate ligand is that of a “shallow” boat. One of the methylene H atoms on the ethyl substituents on the polypyrazolylborate ligand when placed in an idealized position is 2.65 Å distant from the Pt atom.  相似文献   

18.
Absolute rate constants and their temperature dependence were determined by time-resolved electron spin resonance for the addition of the radicals ·CH2CN and ·CH2CO2C(CH3)3 to a variety of mono- and 1,1-disubstituted and to selected 1,2- and trisubstituted alkenes in acetonitrile solution. To alkenes CH2?CXY, ·CH2CN adds at the unsubstituted C-atom with rate constants ranging from 3.3·103 M ?1S ?1 (ethene) to 2.4·106 M ?1S ?1 (1,1-diphenylethene) at 278 K, and the frequency factors are in the narrow range of log (A/M ?1S ?1) = 8.7 ± 0.3. ·CH2CO2C(CH3)3 shows a very similar reactivity with rate constants at 296 K ranging from 1.1·104 M ?1S ?1 (ethene) to 107 M ?1S ?1 (1,1-diphenylethene) and frequency factors log (A/M ?1S ?1) = 8.4 ± 0.1. For both radicals, the rate constants and the activation energies for addition to CH2?CXY correlate well with the overall reaction enthalpy. In contrast to the expectation of an electro- or ambiphilic behavior, polar alkene-substituent effects are not clearly expressed, but some deviations from the enthalpy correlations point to a weak electrophilicity of the radicals. The rate constants for the addition to 1,2- and to trisubstituted alkenes reveal additional steric substituent effects. Self-termination rate data for the title radicals and spectral properties of their adducts to the alkenes are also given.  相似文献   

19.
The non-isothermal devitrification of Na2O · 2 CaO · 3 SiO2 glass has been studied by differential thermal analysis in order to evaluate, from DTA curves, the temperature of maximum nucleation rate, Tm, and the activation energy values, Ec, for crystal growth.The temperature, Tm=580°C, is very close to the glass transition temperature, Tg=570°C, and the value of Ec=78 Kcal mole?1 for the surface crystal growth is nearly the same as the value Ec=89 kcal mole?1 for the bulk crystal growth; both are consistent with the activation energy for viscous flow. It is also pointed out that the nucleation rate—temperature curve and the crystallization rate—temperature curve are partially overlapped.  相似文献   

20.
This study prepared a dense Sm‐doped ceria (SDC) and an SDC carbonate composite (abbreviated as SDC‐C). The latter was prepared by immersing porous SDC with a formula of (Ce0.8Sm0.2)O1.9 and a relative density of approximately 65‐70% into a molten mixture of carbonates containing 1:1 molar ratio of Li2CO3 and Na2CO3 at 500 °C. The relative density of the SDC‐C was close to 100%. In addition, SDC oxide without carbonates, which also has a relative density of close to 100%, was heat treated at 1600 °C. At 500 °C, the electrical conductivity and ionic transference number (ti) of the SDC oxide were 1.79(5) × 10?3 S·cm?1 and 0.99(2), respectively, such that electronic conduction could be disregarded. Increasing the temperature caused a gradual decrease in the ti of SDC. Following the addition of carbonates to SDC, the electrical conductivity reached 1.23(9) × 10?1 S·cm?1 at 500 °C. After 14 days (340 h), the electrical conductivity of the SDC‐C at 490 °C, leveled off at about 6 × 10?2 S·cm?1. SDC‐C could be used as a potential electrolyte in solid oxide fuel cells (SOFCs) at temperatures below 500 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号