首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(caprolactone) (PCL) networks have received significant attention in the literature because of many emerging potential applications as biodegradable materials. In this study, the Michael addition reaction was used for the first time to synthesize biodegradable networks using crosslinking of acetoacetate‐functionalized PCL (PCL bisAcAc) oligomers with neopentyl glycol diacrylate. Hydroxyl‐terminated PCL telechelic oligomers with number‐average molecular weights ranging from 1000 to 4000 g/mol were quantitatively functionalized with acetoacetate groups using transacetoacetylation. In addition to difunctional PCL oligomers, hydroxyl‐terminated trifunctional star‐shaped PCL oligomers were functionalized with acetoacetate groups. Derivatization of the terminal hydroxyl groups with acetoacetate groups was confirmed using FTIR spectroscopy, 1H NMR spectroscopy, mass spectrometry, and base titration of hydroxyl end groups. PCL bisAcAc precursors were reacted with neopentyl glycol diacrylate in the presence of an organic base at room temperature. The crosslinking reactions yielded networks with high gel contents (>85%). The thermomechanical properties of the networks were analyzed to investigate the influence of molecular weight between crosslink points. The glass transition and the extent of crystallinity of the PCL networks were dependent on the molecular weight of the PCL segment. Dynamic mechanical analysis indicated that the plateau modulus of the networks was dependent on the molecular weight of PCL, which was related to the crosslink density of the networks. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5437–5447, 2009  相似文献   

2.
In this article, expanded poly(tetrafluoroethylene) (e-PTFE) membrane surface modification was carried out using acetylene/nitrogen plasma treatment (p-e-PTFE). The variation in surface morphology of the p-e-PTFE membranes was confirmed by FTIR-ATR, scanning electron microscopy (SEM), and contact angle measurements. It was found that the surface hydrophilicity increased with increasing nitrogen content in the feed gas mixture, RF power, and plasma treatment time. The surface pore size decreased with increasing RF power and plasma treatment time. The water contact angles of the modified e-PTFE membrane decreased from 125.8° to 34.1° through the acetylene/nitrogen plasma treatment.  相似文献   

3.
To improve the vapor permeation performance of aqueous alcohol mixtures, acrylamide (AAm) plasma activation then post-graft polymerization onto an expanded poly(tetrafluoroethylene) (e-PTFE) membrane, e-PTFE-g-AAm, was synthesized in this study. The surface properties of the e-PTFE-g-AAm membrane were characterized using ATR/FTIR, SEM, AFM and the water surface contact angle. The degree of grafting increases with increasing polymerization temperature. A maximum value was obtained at 80 °C. The water contact angle of the pristine e-PTFE membrane and the e-PTFE-g-AAm membrane with a 21% grafting degree was 109.7° and 34.1°, respectively. Optimum vapor permeation performance was obtained using an e-PTFE-g-AAm membrane with a 21% grafting degree for a 90 wt.% aqueous ethanol solution, giving a permeate water concentration of 99.4% and a permeation rate of 648 g/m2 h.  相似文献   

4.
Building on the pioneering work of Jean-Marie André and working in the laboratory he founded, the authors have developed a code called FT-1D to make Hartree-Fock electronic structure computations for stereoregular polymers using Ewald-type convergence acceleration methods. That code also takes full advantage of all line-group symmetries to calculate only the minimal set of two-electron integrals and to optimize the computation of the Fock matrix. The present communication reports a benchmark study of the FT-1D code using polytetrafluoroethylene(PTFE) as a test case. Our results not only confirm the algorithmic correctness of the code through agreement with other studies where they are applicable, but also show that the use of convergence acceleration enables accurate results to be obtained in situations where other widely-used codes(e.g., PLH and Crystal) fail. It is also found that full attention to the line-group symmetry of the PTFE polymer leads to an increase of between one and two orders of magnitude in the speed of computation. The new code can therefore be viewed as extending the range of electronic-structure computations for stereoregular polymers beyond the present scope of the successful and valuable code Crystal.  相似文献   

5.
Poly(tetrafluoroethylene) (PTFE) films were treated with a low-temperature cascade arc torch (LTCAT) and radio-frequency (RF) plasmas of argon and hydrogen. The plasma-treatment effect on the PTFE surface was studied with contact-angle measurement and scanning electron spectroscopy (SEM). LTCAT argon plasma, which is recognized as a beam of excited argon neutrals, was very efficient at improving the surface hydrophilicity of PTFE. For both the LTCAT and RF operation, argon plasma was more effective at modifying the surface wettability of PTFE films than hydrogen plasma was. Furthermore, the sample positions (inside or beyond the glow region) had a strong impact on the efficiency of the plasma treatment. SEM surface images indicated that no significant morphology change was induced on the PTFE films exposed to a LTCAT and RF argon plasmas. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4432–4441, 1999  相似文献   

6.
For the purpose of separating aqueous alcohol mixtures by the use of the pervaporation and vapor permeation techniques, a surface resintering expanded poly(tetrafluoroethylene) (e-PTFE), membrane was investigated. The surface properties of the modified e-PTFE membranes were characterized by atomic force microscopy, scanning electron microscopy, and contact angle meter. The X-ray diffraction measurements show that the crystallinity of the e-PTFE membrane decreases with increasing the surface resintering temperature. The surface roughness decreases with the surface resintering temperature increases. The membrane exhibited water selectivity during all process runs. The effects of feed composition, surface resintering temperature, and molar volume of the alcohols on pervaporation and vapor permeation were investigated. Compared with the e-PTFE membrane without surface modified, the e-PTFE membrane with surface resintering treatment effectively improve the separation factor for pervaporation of aqueous alcohol mixtures. The separation performances of e-PTFE membranes in vapor permeation are higher than that in pervaporation.  相似文献   

7.
Direct fluorination of poly(ethylene‐alt‐tetrafluoroethylene) copolymer (ETFE) was carried out on commercially available ETFE films with pure fluorine gas at ambient atmosphere. Reaction temperature was either 95 °C or 150 °C and exposure time was 20 hours. Analysis of the fluorinated samples was performed by attenuated total reflection Fourier transform Infrared, confocal micro‐Raman and 1H and 19F magic angle spinning nuclear magnetic resonance spectroscopies, scanning electron microscopy, electron diffraction and X‐Ray photoelectron spectroscopies, contact angle determination, atomic force microscopy and nanoindentation measurements, and compared to those of the virgin ETFE copolymer. Integrity of the bulk materials was verified by investigating the thermal behavior of the polymers by thermogravimetric analysis and differential scanning calorimetry. Evidence for the formation of a homogeneous layer of polytetrafluoroethylene with a thickness of several microns at the surface of the copolymers with no degradation of the materials was observed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
A novel process comprising the UV‐induced photografting of styrene into poly(tetrafluoroethylene) (PTFE) films and subsequent sulfonation has been developed for preparing proton‐conducting membranes. Although under UV irradiation the initial radicals were mainly generated on the surface of the PTFE films by the action of photosensitizers such as xanthone and benzoyl peroxide, the graft chains were readily propagated into the PTFE films. The sulfonation of the grafted films was performed in a chlorosulfonic acid solution. Fourier transform infrared and scanning electron microscopy were used to characterize the grafted and sulfonated membranes. With a view to use in fuel cells, the proton conductivity, water uptake, and mechanical properties of the prepared membranes were measured. Even through the degree of grafting was lower than 10%, the proton conductivity in the thickness direction of the newly prepared membranes could reach a value similar to that of a Nafion membrane. In comparison with γ‐ray radiation grafting, UV‐induced photografting is very simple and safe and is less damaging to the membranes because significant degradation of the PTFE main chains can be avoided. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2624–2637, 2007  相似文献   

9.
Poly(glycidyl methacrylate), PGMA, chains in linear and arborescent structures were incorporated onto surfaces of poly(tetrafluoroethylene), PTFE, films by hydrogen plasma and ozone treatment and atom transfer radical polymerization. The epoxide groups of the PGMA chains were further reacted with acetic acid (AAc), oxalic acid (XAc), allyl amine (AA), and ethylenediamine (EDN) to introduce hydroxyl and amine groups to the surfaces of the PTFE films. Surface characterizations performed by Fourier Transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the surface modification and the chemical structure. The PGMA chains in arborescent structures show a high effectiveness for the enhancement of the adhesion of PTFE films. The adhesion of PTFE films was also significantly enhanced by ring-opening reactions of the PGMA epoxide groups with acetic acid and amine compounds. A high value of 9.5 N cm(-1) in the optimum 180 degrees peel strength test was observed with PTFE/copper assemblies.  相似文献   

10.
Temperature modulated differential calorimetry (TMDSC) is used to examine the crystal-crystal transitions of poly(tetrafluoroethylene). This study gives new information about the dynamic thermal behavior of such transitions. The involvement of reversible and irreversible processes during the phenomenon is observed, which are related to the order-disorder changes occurring during the transition.This study adds a new example to the response of TMDSC during first order transitions.  相似文献   

11.
In this study CO2, H2/H2O and H2O low pressure plasma treatment of poly(tetrafluoroethylene) (PTFE) foils and of thin plasma deposited fluorocarbon polymer (PDFP) films with a structure close to PTFE was investigated. The properties of the plasma were analyzed by mass spectroscopy (MS) and optical emission spectroscopy (OES). The modified fluorocarbon surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), fourier transform infrared (FTIR) spectroscopy, spectroscopic ellipsometry, electrokinetic measurements and dynamic contact angle measurements in order to find optimized treatment conditions. The results of the surface modification were compared with respect to the efficiency of the plasma treatment and the stability of the modification effect at different ambient conditions. It was shown that the H2O plasma treatment is the most effective process for the intended modification. The hydrophobic PTFE surface was converted into a more hydrophilic one. The introduced radicals after the H2O plasma treatment can be utilized subsequently for post plasma reactions such as grafting processes.  相似文献   

12.
The electron beam induced branching of poly(vinylmethyl ether) (PVME) in bulk and in isopropanol solutions has been studied by gel permeation chromatography. The branching probability of bulk PVME induced by high-energy electrons can be characterized by gel permeation chromatography and a simple probability constant obtained. In isopropanol solutions this branching probability is not constant as a function of dose and is found to decrease with decreasing concentration. These results indicate the importance of solvent effects on the crosslinking of PVME in isopropanol solution by electron beam radiation. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Chitosan/PTFE composite membranes were prepared from casting a γ-(glycidyloxypropyl)trimethoxysilane (GPTMS)-containing chitosan solution on poly(styrene sulfuric acid) grafted expended poly(tetrafluoroethylene) film surface. The adhesion between the chitosan skin layer and the PTFE substrate was pretty good to warrant the high performance of chitosan/PTFE composite membranes using in pervaporation dehydration processes on isopropanol. The chitosan/PTFE membrane exhibited a permeation flux of 1730 g/m2 h and a separation factor of 775 at 70 °C on pervaporation dehydration of a 70 wt% isopropanol aqueous solution. The membrane also survived after a long-term operation test in 45 days.  相似文献   

14.
Redetermination of the crystal structure of poly(p-benzamide) was made by using newly collected intensity data. The molecular conformation is TCTC, where the internal rotation angles about the N? C bond of the amide group and about the virtual bond of N-phenyl-C are T (trans) and C (cis) conformations, respectively. Two molecular chains pass through a rectangular unit cell with dimension, a = 7.75 Å, b = 5.30 Å, c (fiber axis) = 12.87 Å, and the space group, P212121-D. The reflection observed at the spacing of 010 may be attributed to the reflection due to another crystal polymorph or the diffuse scattering due to disorder. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
16.
Commercially available poly(vinyl chloride) (PVC) was covalently modified with terpyridine supramolecular binding units in a two‐step reaction. First, PVC was modified with aromatic thiols to introduce OH functionalities into the polymer backbone, which were subsequently reacted with an isocyanate‐functionalized terpyridine binding unit. The resulting functionalized material contained metal‐ion binding sites, which could be used for grafting and crosslinking reactions. A grafting experiment was performed with a small organic terpyridine ligand. The complexation of the modified PVC with several transition‐metal ions was studied with ultraviolet–visible spectroscopy and gel permeation chromatography. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2964–2973, 2003  相似文献   

17.
The orientational structure of the friction‐transferred poly(tetrafluoroethylene) (PTFE) film, which consists of highly oriented polymer strands, was evaluated with energy‐dispersive total‐reflection X‐ray diffractometry. In the film, each PTFE molecule is oriented along the friction direction, and PTFE crystallites have a preferred orientation with respect to the substrate surface. The orientational distribution of the chain direction was quantitatively evaluated. The half‐width of the distribution was determined to be about 3°. The dependence of the orientational distribution on temperature is discussed. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 432–438, 2001  相似文献   

18.
Nucleation of crystallization of isotactic polypropylene (iPP) and polyoxymethylene (POM) with dispersed submicron particles of another polymer - poly(tetrafluoroethylene) (PTFE) was studied. The polymers were mixed with various contents of PTFE particles, in the range from 0.005 to 0.5 wt.%. iPP and POM with PTFE particles are all-polymer systems with enhanced nucleation of crystallization. PTFE particles with sizes below 300 nm added to POM and iPP efficiently decreased sizes of polycrystalline aggregates. Moreover, nonisothermal crystallization temperature of iPP by increased by up to 14 °C. iPP and POM with PTFE exhibited the elastic modulus slightly higher, by up to 10-13%, than that of the neat polymers. Other mechanical properties remained unchanged, with the exception of reduced elongation at break of POM with PTFE.  相似文献   

19.
This study reports a method to prepare fully aromatic poly(ether ketone) thermosets. The cyclization of 2′,5′‐dimethoxy[1,1′‐biphenyl]‐2,5‐diol and a difluoro monomer was carried out under pseudo high dilution condition. Two types of fully aromatic poly(ether ketone)s with macrocycle were successfully prepared by copolymerization of macrocycle of aryl ether ketone containing hydroxyphenyl groups, 4,4′‐(hexafluoroisopropylidene)diphenol (HFBPA), and 4,4‐difluorobenzophenone. The obtained copolymers have high molecular mass, good solubility, and high glass transition temperatures in the presence of CsF, the crosslinking reaction of copolymers occurred and afforded fully aromatic thermoset poly(aryl ether ketone)s by ring‐opening reaction driven by entropy. After crosslinking, these copolymers show much higher glass transition temperatures, excellent thermal stability, and better mechanical strength. © Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7002–7010, 2008  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号