首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 13C spin-lattice relaxation times T1 of 13C-labeled polyethylene crystallized under different conditions were measured at temperatures from ?120 to 44°C by variable-temperature solid-state high-resolution 13C nuclear magnetic resonance (NMR) spectroscopy, in order to determine accurately the dynamics of the noncrystalline region of the polymer. From these results, it was found that the T1 minimum for the CH2 carbons in the noncrystalline region of solution-crystallized polyethylene with high crystallinity appears at higher temperature by about 20°C than that of melt-quenched polyethylene with low crystallinity. This means that the molecular motion of the CH2 carbons in the noncrystalline regions is more constrained at a given temperature in the material of higher crystallinity. Furthermore, dynamics of the noncrystalline region is discussed in terms of the 13C dipolar dephasing times.  相似文献   

2.
We outline the details of acquiring quantitative 13C cross‐polarization magic angle spinning (CPMAS) nuclear magnetic resonance on the most ubiquitous polymer for organic electronic applications, poly(3‐hexylthiophene) (P3HT), despite other groups' claims that CPMAS of P3HT is strictly nonquantitative. We lay out the optimal experimental conditions for measuring crystallinity in P3HT, which is a parameter that has proven to be critical in the electrical performance of P3HT‐containing organic photovoltaics but remains difficult to measure by scattering/diffraction and optical methods despite considerable efforts. Herein, we overview the spectral acquisition conditions of the two P3HT films with different crystallinities (0.47 and 0.55) and point out that because of the chemical similarity of P3HT to other alkyl side chain, highly conjugated main chain polymers, our protocol could straightforwardly be extended to other organic electronic materials. Variable temperature 1H NMR results are shown as well, which (i) yield insight into the molecular dynamics of P3HT, (ii) add context for spectral editing techniques as applied to quantifying crystallinity, and (iii) show why TH, the 1H spin–lattice relaxation time in the rotating frame, is a more optimal relaxation filter for distinguishing between crystalline and noncrystalline phases of highly conjugated alkyl side‐chain polymers than other relaxation times such as the 1H spin–spin relaxation time, T2H, and the spin–lattice relaxation time in the toggling frame, T1xzH. A 7 ms TH spin lock filter, prior to CPMAS, allows for spectroscopic separation of crystalline and noncrystalline 13C nuclear magnetic resonance signals. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

3.
The phase behavior and motional mobility in binary blends of poly(4‐methylstyrene) (P4MS) and poly(cyclohexyl methacrylate) (PCHMA) have been examined by 13C solid state NMR techniques. The blend miscibility was studied by measuring the 1H spin‐relaxation times in the laboratory frame (T1H) and in the rotating frame (TH), respectively. Although intermolecular spin diffusion contributes to the proton relaxations in accordance with homogeneity, TH data shows signs of in complete averaging. The TH relaxation behavior indicates the existence of heterogeneous do mains with shortest dimensions in the nanometer range, which is also sup ported by the intermolecular cross polarization experiments with variable contact times. In addition, according to the resuits of carbon T relaxation time measurements, it is concluded that mixing is intimate some what enough to cause a reduction in local chain mobility for P4MS and vice versa for PCHMA.  相似文献   

4.
The 13C NMR spin-lattice relaxation times (T1) of anhydroglucose units vary with the number of substituents, and the T1 values of unsubstituted anhydroglucose units of O-carboxymethylcellulose are longer than those of amylose. Those results indicate that in water, the rotational motions of anhydroglucose units of cellulose derivative are quite important local motions contributing to the 13C NMR spin-lattice relaxation, and within a cellulose chain, anhydroglucose units rotate with different degrees of freedom depending on their environment. Moreover, the 13C NMR spin-lattice relaxation data indicate that the mobilities of ionic substituents are dependent on substitution positions as well as their ionic interaction. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
Single-pulse 13C NMR spectra and spin-lattice relaxation times T1(1H), detected indirectly via 13C carbons, and T1(13C) were measured at 31°C for virgin pelletized and annealed polylactic acid (PLA) samples using the magic-angle spinning technique. The structural relaxation resulting in more regular crystals with narrower conformation distribution and increase in the lamellae thickness and crystallinity brought about by annealing at 100°C was deduced from the narrowing of the 13C NMR lines and proton spin-lattice relaxation times T1(1H). The spin-lattice relaxation times T1(13C) related to the respective carbons of the α-polymorph of PLA are also discussed in the study.  相似文献   

6.
The mechanisms behind the nonlinear optical (NLO) properties of Li2B4O7 are characterized by 7Li static nuclear magnetic resonance (NMR) and magic-angle spinning (MAS) NMR. Furthermore, the structural nature of 3-coordinate BO3 and 4-coordinate BO4 groups is also characterized by the same method. For 7Li and 11B, the spin-lattice relaxation time T1 in laboratory frame gradually decreases with increasing temperature, whereas the spin-lattice relaxation time T in rotating frame, which differs from T1, is nearly constant. In addition, the activation energies of 7Li and 11B, which are obtained via the values of T1 and T, are also compared.  相似文献   

7.
The crystalline–noncrystalline structure and its structural changes from thermal treatments for ethylene ionomers have been investigated with solid‐state 13C and 23Na NMR spectroscopy. 13C spin–lattice relaxation time (T1C) measurements reveal that as‐received ethylene ionomers have much enhanced molecular mobility in the crystalline region in comparison with conventional polyethylene samples. By appropriate annealing, however, polyethylene‐like morphological features reflecting T1C behavior can also be observed. 13C spin–spin relaxation time (T2C) measurements for the noncrystalline region reveal the existence of two components with different T2C values, and these two components have been assigned to the crystalline–amorphous interfacial and rubbery–amorphous components. These results indicate that the structure of the major part of the noncrystalline region in the ethylene ionomers is similar to that of bulk‐crystallized polyethylene samples, regardless of possible ionic aggregates. The origin of the lower temperature endothermic peak in the heating process of the differential scanning calorimetry curve observed for the as‐received sample has also been examined somewhat in detail. As a result, it is proposed that the melting of smaller crystallites produced during storage at room temperature is the origin of the lower temperature peak. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1142–1153, 2002  相似文献   

8.
Crystallizable runs of ethene in ethene-propene copolymers can be identified in 13C CPMAS NMR spectra as a resonance at 33 ppm. In the absence of spin diffusion, the variation in intensity of this resonance with a 1H spin lock will reflect the intrinsic TH. Spin diffusion leads to a more complex relaxation decay, which reflects the local polymer morphology. Simulations of the spin diffusion process have been carried out for a simplified two-phase model for the morphology with the aim of determining whether the lamellar thickness of the crystalline and amorphous regions can be found from the TH observed via the 13C NMR spectrum. Calculations covering the expected range of the input parameters, namely the spin diffusion coefficients, domain lengths, and intrinsic relaxation times, show that, providing the intrinsic relaxation time in the amorphous phase is known, an accurate estimate of the crystalline and amorphous lamellar thicknesses can be made. Analysis of simulated TH decays indicate that, in general, the time constant of the fastest decaying component can be identified with the intrinsic relaxation time of the amorphous phase. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
This study uses nuclear magnetic resonance (NMR) techniques to examine the detailed changes in [N(C2H5)4]2CdCl4 around its phase transition at the temperature TC = 284 K. The chemical shifts and spin-lattice relaxation times in the rotating frame (T) were determined from 1H magic angle spinning (MAS) NMR and 13C cross-polarization (CP)/MAS NMR spectra. The two sets of inequivalent 1H and 13C nuclei in CH3 and CH2 were distinguished. A ferroelastic phase transition was observed at TC, without structural symmetry change. The phase transition is mainly attributed to the orientational ordering of the [N(C2H5)4]+ cations, and the spectral splitting at low temperature is associated with different ferroelastic domains.  相似文献   

10.
Abundant literature exists on starch or modified starch blended with biodegradable polyesters to achieve good performance with cheap compost plastics. The level of miscibility in these blends is one of the most relevant parameters. In the present study, solid-state 1H and 13C NMR spectra, as well as carbon spin-lattice relaxation times T1(C) and proton spin-lattice relaxation times T1(H) and proton spin-lattice relaxation times in the rotating frame T(H) of biodegradable starch (or starch formate)/polycaprolactone (PCL) (or polyester (PE) oligomers) blends and samples of the neat components were measured. From the T(H) and T1(H) relaxation times it follows that blends starch/PCL, starch/PE-oligomers and starch formate/PE-oligomers are phase separated even on the scale of 20-110 nm. On the contrary starch formate/PCL blend is phase separated on the scale 2.5-12 nm but homogeneously mixed on the scale 20-90 nm. Moreover, shorter T1(C) and especially T(H) values found for the starch or starch formate component in all these blends in comparison with neat samples show that molecular mobility of starch and starch formate segments is affected by blending. This indicates some miscibility also in phase separated blends which can happen in amorphous channels of starch.  相似文献   

11.
13C solid-state nuclear magnetic resonance (NMR) experiments on linear polyurethanes and poly(ether-urethane) block copolymers demonstrate that 13C spin-lattice relaxation experiments in the laboratory [T1(C)] and rotating [T1p(C)] frames provide the most information about domain morphology in these microphase-separated polymer systems. T1(H) TCH, and T1p(H) data are less useful in a 4,4′-methylene bis(p-phenyl isocyanate)-1,4-butanediol (MDI/BD) hard-segment material, the MDI bridging methylene and the MDI urethane carbonyl T1(C and T1p(C) times fall in characteristic ranges for crystalline, amorphous, interfacial, and dissolved species. BD methylene carbons have short T1p(C) for crystalline and long T1p(C) for amorphous hard-segment aggregates. The distinct T1p(C) and T1(C) fractins observed are attributed to the presence of several crystalline polymorphs. Both T1(C) results and DSC endotherms indicate that the crystalline polymorphs present in the poly(ether-urethane) are less ordered than the types seen in the pure hard-segment material. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The dynamics of amorphous aromatic polyesters consisting of poly(ethylene terephthalate) (PET), poly(ethylene isophthalate) (PEI), and poly(ethylene 2,6-naphthalenedicarboxylate) (PEN) has been investigated by means of solid state CPMAS 13C NMR. Proton T2, 13C T, and proton T decays have been measured in particular, and the experimental data fitted to suitable model functions to determine best relaxation parameters. The fitting results show for proton T2 and 13C T measurements the presence of two components with different relaxation times and intensities, arising from different motional domains. The proton T, on the contrary, shows a single component which limits the dimensions of the two regions to less than 20 Angstroms. The dependence of 13C T values on two different irradiating field strengths (H1 = 38 KHz, H1 = 60 KHz) allowed the assignment of each component to relatively rigid and mobile regions. By comparing the three polymers we observe that PEN and PEI have a similar relaxation behavior, while a higher fraction of mobile components was found for PET. These differences are believed to arise mainly from local motions of the aromatic rings. The relaxation measurements have been evaluated to suggest a correspondence to O2 and CO2 gas permeabilities in PET, PEI, and PEN. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1557–1566, 1998  相似文献   

13.
The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) and poly(N-vinyl pyrrolidone) (PVP) was investigated by differential scanning calorimetry (DSC) and high-resolution solid-state nuclear magnetic resonance (NMR) techniques. The DSC studies showed that the phenoxy/PVP blends have a single, composition-dependent glass transition temperature (Tg). The S-shaped Tg-composition curve of the phenoxy/PVP blends was reported, which is indicative of the strong intermolecular hydrogen-bonding interactions. To examine the miscibility of the system at molecular level, high-resolution solid-state 13C nuclear magnetic resonance (NMR) technique was employed. Upon adding phenoxy to system, the chemical shift of carbonyl carbon resonance of PVP was observed to shift downfield by 1.6 ppm in the 13C cross-polarization (CP)/magic angle spinning (MAS) together with the high-power dipolar decoupling (DD) spectra when the concentration of phenoxy is 90 wt %. The observation was responsible for the formation of intermolecular hydrogen bonding. The proton spin-lattice relaxation time T1(H) and the proton spin-lattice relaxation time in the rotating frame T(H) were measured as a function of the blend composition. The T1(H) result was in good agreement with the thermal analysis, i.e., the blends are completely homogeneous on the scale of 20 ∼ 30 nm. The six results of T(H) further indicated that the blends were homogeneous on the scale of 40 ∼ 50Å. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2291–2300, 1998  相似文献   

14.
Poly(vinylimidazole-co-methyl methacrylate)-silica hybrids, bonded through hydrogen bond (PVM-SiO2) or chemical bond (PVM(5)-SiO2) between organic and inorganic units, were prepared and characterized. The characterization of PVM-SiO2 and PVM(5)-SiO2 hybrids were confirmed by IR, 13C and 29Si NMR spectra. The intermolecular interaction between copolymer chains was studied by the spin-lattice relaxation time in the rotating frame (TH1ρ), and that between copolymer and silica was evaluated by the time constant for energy change between 1H and 29Si spin system (TSiH). TH1ρ and TSiH values in PVM-SiO2 hybrids were consistent with those in PVM(5)-SiO2 hybrids, and those were independent of the silica content. Moreover, the TH1ρ values are in order of poly(methyl methacrylate)-silica hybrids (PMMA-SiO2) ≧ PVM-SiO2 ≒ PVM(5)-SiO2 > polyvinylimidazole-silica hybrids (PVI-SiO2), while those of TSiH are in reverse order PMMA-SiO2 ≦ PVM(5)-SiO2 < PVI-SiO2.  相似文献   

15.
The spin-lattice relaxation time (T 1) of7Li+ was measured in solutions of LiCl and LiClO4 in protic (MeOH, EtOH,n-PrOH,i-PrOH,n-BuOH, sec-BuOH, formamide, N-methylformamide) and aprotic (MeCN, acetone, methyl ethyl ketone, propylene carbonate, dimethyl sulfoxide, dimethylformamide, hexamethylphosphotriamide) solvents and in mixtures of H2O-formamide, H2O–N-methylformamide, H2O–N,N-dimethylformamide, H2O-DMSO, H2O-hexamethylphosphotriamide, and formamide-N,N-dimethylformamide at 25°C. The values of (1/T 1)0 obtained by extrapolation are discussed in terms of current theories of the magnetic relaxation of ionic nuclei. Linear correlations were found between (1/T 1)0 and Gutmann's donor numbers and Kosower's Z-values. These correlations indicate that relaxation of7Li+ is dominated by donor-acceptor interaction of the cation with solvent molecules. Concentration dependences of 1/T 1 for LiCl and LiClO4 differ from one another in a given solvent, a fact which is accounted for by a specific cation-anion short-range potential. The quantity 1/T 1 of7Li+ atC=1 mole per 55.5 moles of mixed solvent as a function of solvent composition show characteristic features, which are discussed in terms of the relaxation mechanism proposed.  相似文献   

16.
In this article, it is demonstrated that doctor blading of thin poly‐3‐hexylthiophene/phenyl‐C61‐butyric acid methyl ester (1/1) bulk‐hetero junction films from toluene leads to an improved nanocrystallinity, when compared with their unannealed chlorobenzene processed counterparts. This difference in morphology was demonstrated by solid‐state NMR and Rapid Heating Cooling Calorimetry (RHC), being useful complementary techniques to investigate the active layer morphology of photovoltaic devices. An increased PC60BM nanocrystallinity is indicated by several NMR relaxation decay times (T1C, T1H, and T1ρH) and confirmed by an increase of the melting enthalpy in RHC experiments. An improved solar cell performance further strengthens this conclusion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
13C T values measured for isobutylamine, diethylamine, pyrrolidine, piperidine and triethylamine yield one-bond 14N? 13C coupling constants and 14N spin-lattice relaxation times. A decrease of 1J(14N13C) was observed in sterically hindered secondary amines.  相似文献   

18.
The 13C chemical shifts and the 13C−1H coupling constants of quinoline (1-(X-quinolyl)ethyl acetate derivatives (where X=−CH(OAc)CH3 substituted at positions 2,4,5–8) are reported. Substituent chemical shift (SCS) effects for the ethyl acetate group are additive at all positions. A substantial upfield shift of 4.5 and 4.8 ppm was observed at C-4 and C-5, arising from the peri interaction of 5- and 4-ethyl acetate substituents respectively. A vicinal (peri) 3J CCCH coupling constant of approximately 5 Hz is observed between both C5−H4 and C4−H5. Carbon-13 relaxation times (T1) and nuclear Overhauser enhancements (η) have been measured for quinoline and its derivatives, and the contributions of dipolar, T1DD, and spin rotation, T1SR, relaxation have been determined. Intramolecular dipole-dipole interactions are found to provide by far the most important spin-lattice relaxation mechanism whenever protons are bound directly to the carbons under investigation. Non-protonated ring carbons are relaxed by both DD and SR mechanisms. Anisotropic motion has an easily observable effect on the DD contribution to T1, and can form the basis for spectral assignments, as in 1-phenylethyl acetate. Long-range 13C−1H coupling constants were observed both between ring carbons and between ring carbons with ring side-chain hydrogens. These results have been used for the structure determination of the title compounds.  相似文献   

19.
New information has been obtained from very‐high‐resolution 13C NMR studies of a series of long‐chain n‐alkanes. These compounds are fundamentally important in the petroleum industry and are essential to the life of some plants, flowers, and insects. At least partial resolution of the ten different 13C NMR signals of n‐C20H42 is observed at 11.7 T for solutions in C6D6 or C6D5CD3. A 13C T1 inversion‐recovery experiment provides much more detailed information than in previous studies of long‐chain n‐alkanes, demonstrates a steady increase in the relaxation times of the ten different carbons proceeding from the middle to the end of the chain because of segmental motion, and thus confirms the assignments for the interior carbons. In contrast, there is significant overlap for the signals for C‐7 and the more interior carbons in a solution of n‐C16 or longer chain alkanes in CDCl3. Not only are the chemical shifts sensitive to the solvent used, but also the relative chemical shifts change. Signals for the interior carbons of the odd‐number alkanes in CDCl3 are better resolved than in the spectra of their even‐number counterparts. Some mixed aromatic solvent systems give increased dispersion of the cluster of C‐6 through C‐10 signals of n‐C20H42, n‐C21H44, and n‐C22H46. However, none of the solvents used could even partially resolve the C‐10 and C‐11 signals of n‐C21H44 or n‐C22H46 at 11.7 T, which may result from a different distribution of conformers for n‐C21H44 or n‐C22H46 than for n‐C20H42 and shorter n‐alkanes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Spin-lattice 1H and 13C nuclear magnetic relaxation (NMR) times T1 have been measured for solutions of polystyrene in hexachlorobutadiene at two different frequencies. Some nuclear Overhauser enhancements and linewidths have also been determined. At 15 and 25 MHz the relaxation times T1 of the ortho and meta carbons show two different dependences on temperature. These measurements indicate internal motion of phenyl groups around the Cα—Cpara axis. A single isotropic correlation time is inadequate to explain the relaxation data for the para carbon. Use of a diamond-lattice motional model reveals that segmental reorientation of the chain backbone of polystyrene can be described in terms of two correlation times, ρ characterizing the three-bond motion process, and θ reflecting either isotropic motions of subchains or departure from an ideal lattice. Data on low-molecular-weight polystyrene indicate the participation of overall rotatory diffusion in the relaxation process. This motion is no longer efficient in high-molecular-weight polymers, where relaxation is due to segmental reorientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号