首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fourier transform ion cyclotron resonance mass spectrometry has been used to investigate some aspects of the gas phase negative ion chemistry of benzaldehyde. It is shown that all protons are nearly equally acidic. Exothermic proton abstraction from the aldehydic position by NH2- leads to the formation of C6H5-, ions. Reactions of several nucleophiles and benzaldehyde are discussed. Some of them proceed via a tetrahedral intermediate. Arguments are put forward to show that one of the reactions of the conjugate base of benzaldehyde involves benzaldehyde-hydrate molecules formed in the inlet lines towards the cell.  相似文献   

2.
3.
This short review summarizes recent and projected advances in Fourier transform ion cyclotron resonance mass spectrometry instrumentation and applications, ranging from petroleomics to proteomics. More details are available from the cited primary literature and topical reviews.  相似文献   

4.
By injection of the proton bound homodimer [DMF.H+.DMF] of N,N-dimethylformamide (DMF) generated in an external ion source into a mixture of DMF and a second base within the cell of a Fourier transform ion cyclotron resonance (FT-ICR) spectrometer the equilibria between [DMF.H+.DMF] and the other possible proton bound dimers [DMF.H+.base] and [base.H+.base] have been studied for 13 different bases. Strongly polar bases like aliphatic amides and dimethyl sulfoxide (DMSO) exchange both DMF in [DMF.H+.DMF] by a two step process, while the almost non-polar amines exchange only one DMF. If the base is a primary or secondary amine, the proton bound heterodimer [DMF.H+.amine] reacts further by the addition of one DMF to create a proton bound trimer [(DMF)2.H+.amine]. The affinity deltaG(DMFH+) of the bases towards protonated DMF relative to neutral DMF depends linearly on the difference deltaGB of the gas phase basicity of DMF and the other base, but different correlation lines are obtained for polar and non-polar ligands (deltaGDMFH+ = 0.44GB(base)-375 [kJ/mol] (r = 0.97) and deltaGDMFH+ = 0.46GB(base)-397 [kJ/mol] (r = 0.99), respectively). This different behavior is explained by a different character of the proton bridge in the heterodimers containing only polar ligands and those incorporating a non-polar ligand besides DMF. The former dimers contain a more or less symmetric proton bridge while the latter can be viewed as a protonated base solvated by DMF. The available data have been used to calculate the molecular pair gas phase basicity of DMF and the 13 bases used and to estimate the dissociation energies of the bonds of the proton bridge in various proton bound heterodimers.  相似文献   

5.
Fourier transform ion cyclotron resonance (FT-ICR) detection was tested for resonanceenhanced multiphoton ionization (REMPI) spectroscopy. The (2+1) REMPI spectra of acetaldehyde were obtained in the wavelength range 364–354 nm via a two-photon resonant 3sn Rydberg transition. The space-charge effects on the REMPI spectra were examined in the vicinity of the 0 0 0 transition. The trapping efficiency measurement shows that all the ions produced from REMPI dissociation processes are arrested in the ion cyclotron resonance cell even in the presence of space-charge interactions. Axial kinetic energy release distributions of ions were extracted from the trapping efficiency data obtained under a new space-charge-free condition. FT-ICR peak heights were measured as a function of pressure at different laser powers, magnetic field strengths, and ion excitation methods to test for the detection linearity. The FT-ICR detection responds linearly to the number of ions in a low pressure limit. The product branching ratio was measured by using various ion excitation methods and was compared with the previous quadrupole mass spectrometric study. FT-ICR detection yields the mass-selected REMPI spectra and the product branching ratio in the absence of kinetic shifts.  相似文献   

6.
It is shown that nonreactive ion—molecule collision frequencies may be determined either by analysis of the transient signal resulting from excited ion cyclotron motion or by linewidth measurement of the Fourier transform of the transient signal.  相似文献   

7.
Peak coalescence, i.e. the merging of two close peaks in a Fourier transform ion cyclotron resonance (FTICR) mass spectrum at a high number of ions, plays an important role in various FTICR experiments. In order to describe the coalescence phenomenon we would like to propose a new theory of motion for ion clouds with close mass‐to‐charge ratios, driven by a uniform magnetic field and Coulomb interactions between the clouds. We describe the motion of the ion clouds in terms of their averaged drift motion in crossed magnetic and electric fields. The ion clouds are considered to be of constant size and their motion is studied in two dimensions. The theory deals with the first‐order approximation of the equations of motion in relation to dm/m, where dm is the mass difference and m is the mass of a single ion. The analysis was done for an arbitrary inter‐cloud interaction potential, which makes it possible to analyze finite‐size ion clouds of any shape. The final analytical expression for the condition of the onset of coalescence is found for the case of uniformly charged spheres. An algorithm for finding this condition for an arbitrary interaction potential is proposed. The critical number of ions for the peak coalescence to take place is shown to depend quadratically on the magnetic field strength and to be proportional to the cyclotron radius and inversely proportional to the ion masses. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
石油是一种复杂体系,研究石油分子组成是分析化学领域的经典难题.近年来,傅里叶变换离子回旋共振质谱技术(Fourier transform ion cyclotron resonance mass spectrometry,FT-ICR MS)的发展,为从分子水平认识石油组成提供了机会,引起了石油化学界的高度关注,并被期待能在石油、石化领域的相关研究中实现重大突破.本文从质谱分辨率和电离技术方面介绍了石油样品的分析需求,总结了近几年基于FT-ICR MS技术对石油分子组成的研究进展,分析了其在应用中存在的关键技术问题及下一步研究方向,并对FT-ICR MS的发展前景给予展望.  相似文献   

9.
Suspended trapping is used to eject electrons in negative-ion Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometric experiments. In contrast to electron ejection by resonant excitation of the trapping motion, suspended trapping involves allowing the electrons to escape along the z-axis (perpendicular to the trap plates) while the trapping potential is briefly removed. The duration of this event is sufficiently short (~10 μs) so that ion losses are negligible; the overall effect is that of a ‘high-pass mass filter’. Suspended trapping is simpler to implement and more generally applicable to various cell geometries than resonant electron ejection. The effectiveness of the suspended trapping technique is not compromised by the anharmonicity of the potential well in ‘elongated’ ICR traps, but depends simply on the time it takes the electrons to escape the cell. Finally, a small, positive offset potential (~+0.25 V) applied to the trap plates during the suspended trapping event increases the efficiency of the ejection.  相似文献   

10.
Liquid separation methods in combination with electrospray mass spectrometry as well as the recently introduced fragmentation method electron capture dissociation (ECD) have become powerful tools in proteomics research. This paper presents the results of the first successful attempts to combine liquid chromatography (LC) and Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with ECD in the analysis of a mixture of standard peptides and of a bovine serum albumin tryptic digest. A novel electron injection system provided conditions for ECD sufficient to yield extensive sequence information for the most abundant peptides in the mixtures on the time-scale of the chromatographic separation. The results suggest that LC/ECD-FTICRMS can be employed in the characterization of peptides in enzymatic digests of proteins or protein mixtures and identify and localize posttranslational modifications.  相似文献   

11.
Kojic acid (5-hydroxy-2-hydroxymethyl-4-pyrone) is known to have a high affinity for transition metals, and it and its derivatized cogeners are used both analytically and clinically. The interactions between kojic acid (KA) and eleven +3 metals (Al(+3), As(+3), Cr(+3), Ga(+3), Fe(+3), In(+3), Yb(+3), Y(+3), Gd(+3), Nd(+3), La(+3)) were examined by electrospray ionization mass spectrometry (ESI-MS) using an ion trap in an aqueous medium. For a subset of five ions, Fourier transform ion cyclotron resonance (FTICR)-MS was conducted to provide accurate mass confirmation of peak assignments for metals having clustering of abundant isotopes. KA readily formed complexes with all the metal ions tested. The most common complexes observed were ML(3)H(+) and M(2)L(5). Different behavior was seen for small and large ionic radius ions, with a relative cut-off between In(+3) ( approximately 80 pm) and Yb(+3) ( approximately 87 pm); a striking trend in % collision energy vs. cluster complexity was revealed. The KA-Cr(+3)complex shows a high affinity for H(2)O molecules in the gas phase, whilst In(+3) shows a preference for dimetal complexes and Y(+3) a deviant behavior when complexed to two neutrals.  相似文献   

12.
The patterns of gene expression, post-translational modifications, protein/biomolecular interactions, and how these may be affected by changes in the environment, cannot be accurately predicted from DNA sequences. Approaches for proteome characterization are generally based upon mass spectrometric analysis of in-gel digested two dimensional polyacrylamide gel electrophoresis (2-D PAGE) separated proteins, allowing relatively rapid protein identification compared to conventional approaches. This technique, however, is constrained by the speed of the 2-D PAGE separations, the sensitivity limits intrinsic to staining necessary for protein visualization, the speed and sensitivity of subsequent mass spectrometric analyses for identification, and the limited ability for accurate quantitative measurements based on differences in spot intensity. We are presently developing alternative approaches for proteomics based upon the combination of fast capillary electrophoresis, or other suitable chromatographic separations, and the high mass accuracy and sensitivity obtainable with unique Fourier transform ion cyclotron resonance (FTICR) mass spectrometers available at our laboratory. Several approaches are presently being pursued; one based upon the analysis of intact proteins and the second upon approaches for global protein digestion and accurate peptide mass analysis. Quantitation of protein/peptide levels are based on using two or more stable-isotope labeled versions of proteomes which are combined to obtain precise quantitation of relative protein abundances. We describe the status of our efforts towards the development of a high-throughput proteomics capability and present initial results for application to several microorganisms and discuss our efforts for extending the developed capability to mammalian proteomes.  相似文献   

13.
A new method for application of quadrupolar excitation to the trapped ion cell of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer is presented. Quadrupolar excitation is conventionally applied to the two pairs of opposed electrodes that normally perform the excitation and detection functions in the FTICR experiment. Symmetry arguments and numerically calculated isopotential contours within the trapped ion cell lead to the conclusion that quadrupolar excitation can be applied to a single pair of opposed side electrodes. Examples of effective quadrupolar axialization via this method include a sevenfold signal-to-noise enhancement derived from 50 remeasurements of a single population of trapped bovine insulin ions and the selective isolation of a single charge state of horse heart myoglobin after an initial measurement that revealed the presence of 14 charge states.  相似文献   

14.
15.
16.
A novel strategy was developed to extend the application of electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) to the analysis of long-chain polysaccharides. High molecular weight polydisperse maltodextrins (poly-alpha(1-4) glucose) and dextrans (poly-alpha(1-6) glucose) were chosen as model compounds in the present study. Increased ionization efficiency of these mixtures in the positive ion mode was achieved upon modification of their reducing end with nitrogen-containing groups. The derivatization method is based on the formation of a new C--N bond between 1,6-hexamethylenediamine (HMD) and the reducing end of the polysaccharide, which exists in solution as an equilibrium between the hemiacetal and the open-ring aldehyde form. To achieve the chemical modification of the reducing end, two synthetic pathways were developed: (i) coupling of HMD by reductive amination and (ii) oxidation of the hemiacetal to lactone, followed by ring opening by HMD to yield the maltodextrin lactonamide of 1,6-hexanediamine (HMMD). Amino-functionalized polysaccharides were analyzed by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FTICR-MS) in the positive ion mode by direct flow injection. The hexamethylenediamine (HMD) and maltodextrin lactonamide of 1,6-hexanediamine (HMMD) moieties provide increased proton affinities which dramatically improve the detection of the long-chain polysaccharides by FTICR-MS. The present approach allowed for identification of single components in mixtures with prominent heterogeneity in the degree of polymerization (DP), without the need for chromatographic separation prior to MS. The high mass accuracy was essential for the unambiguous characterization of the species observed in the analyzed mixtures. Furthermore, molecular components containing up to 42 glucose residues were detected, representing the largest polysaccharide chains analyzed so far by ESI FTICR-MS.  相似文献   

17.
Electrospray ionization (ESI) was performed on a Fourier transform ion cyclotron resonance mass spectrometer for the endgroup and monomer mass determination of three poly(oxyalkylene)s in the mass range of 400–8000 Da. A combined use of the multiple charge states observed with ESI, leads to a threefold increase in accuracy of the endgroup and monomer determination. The improvement is attributed to the increased number of datapoints used for the regression procedure, yielding more accurate results. Endgroup masses are determined with a mass error better than 5 and 75 millimass units for the molecular weight range of 400–4200 and 6200–8000 Da, respectively. A mass error of better than 1 millimass unit was observed for all monomer mass determinations. With ESI, endgroup and monomer masses have been determined for poly(ethylene glycol) oligomers with a mass higher than 8000 Da. This is almost two times higher than observed with matrix-assisted laser desorption/ ionization on the same instrument.  相似文献   

18.
19.
Five isoflavones, daidzein, genistein, formononetin, prunetin and biochanin A, known for their biological properties, are investigated by electrospray ionization mass spectrometry in the positive ion mode. The most probable protonation sites are determined taking into account semi-empirical calculations using the PM6 Hamiltonian. Fragmentation mechanisms are proposed based on accurate mass measurements, MS(3) experiments and supported by the semi-empirical calculations. Some of the fragmentation pathways were found to be dependent on the substitution pattern of the B-ring and the ions afforded by these fragmentations can be considered as diagnostic. It was possible to distinguish between prunetin and biochanin A, two isobaric isoflavone aglycones included in this study. Furthermore, a comparison of the fragmentation patterns of genistein and biochanin A, two isoflavones, with those of their flavone counterparts, apigenin and acacetin, enabled us to identify some key ions mainly due to structural features, allowing distinction to be made between these two classes of compounds.  相似文献   

20.
Naphthenic acids present formidable challenges for the petroleum industry and are a growing concern in the aquatic environment. For example, these acids are responsible for corrosion of refinery equipment, leading to the incurrence of additional costs to the consumer, and are toxic to aquatic wildlife, making disposal and remediation of contaminated waters and sediments a significant problem. The detection and characterization of naphthenic acids is therefore of considerable importance. Fourier transform ion cyclotron resonance mass spectrometry is presented as a technique with inherently ultra-high mass accuracy and resolution, affording unequivocal assignments. The suitability of the technique for environmental applications is demonstrated to characterize two different commercial mixtures of naphthenic acids and one oilsands tailings pond sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号