首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A method combining the techniques of liquid – solid disk extraction (LSDE) and supercritical fluid elution (SFE) has been developed for the phenols regulated by the Clean Water Act. LSDE uses a disk or membrane made of polytetrafluoroethylene (PTFE) fibrils impregnated with small particles, e.g. styrene divinylbenzene (SDB) resin, to extract phenols from water. After disk extraction the retained analytes are eluted from the disk using SFE. SFE is used as an alternative to liquid solvent elution with an organic solvent. Analytes are separated, identified, and quantified using gas chromatography – ion trap detector mass spectrometry (GC-ITDMS). The method is capable of sub parts per billion detection limits, and precision of 5–28% RSD. Evaluation of various disks or membranes, such as C18-silica disks, SDB disks, and ion exchange membranes, has also been performed for the extraction of phenols from water. The results obtained from the in-situ aqueous acetylation of phenols and extraction of their acetates are quantitative. The utilization of LSDE and SFE techniques has proven to be a more effective approach than liquid – liquid extraction in minimizing air pollution and solvent waste.  相似文献   

2.
A key feature differentiating analytical supercritical fluid extraction (SFE) from conventional liquid extraction is the possibility of varying the solvent strength of a supercritical fluid to achieve selective extractions of specific target compounds, or functional classes of compound, from complex matrices. This can be accomplished by using supercritical fluids other than carbon dioxide, for example, sulfur hexafluoride, nitrous oxide, or sulfur hexafluoride-modified carbon dioxide. The use of these fluids will be demonstrated by the characterization of complex environmental and petroleum matrices by directly coupled SFE – capillary GC. On-line SFE-GC involves the decompression of pressurized extraction fluid directly into the heated, unmodified capillary split injection port of the chromatograph. This paper will also show how, by adjustment of the extraction temperature and pressure, SFE selectivity may be further enhanced.  相似文献   

3.
4.
Capillary supercritical fluid chromatography has been directly coupled with supercritical fluid extraction using modified carbon dioxide. The mixed fluids were prepared with a single pump on-line mixing system. The most important step in the SFE-SFC interface was the elimination of the modifier solvent. This was achieved by use of a coupled trap, 0.1 mm i.d. and 0.53 mm i.d. capillary tubing connected in series, with the collected solutes refocused on the second (0.53 mm i.d.) trap before transfer into the separation column. This enabled complete elimination of various modifier solvents and high efficiency collection of the solutes. The effect of the modifier on trapping efficiency was investigated using methanol, ethanol, dichloromethane, hexane, and toluene at a variety of concentrations. n-Eicosane was, for example, trapped quantitatively by modified carbon dioxide containing up to 13 % (w/w) methanol. The use of the technique has been demonstrated by selective extraction of n-paraffins, fatty acid methyl esters, and alcohols from a silica matrix; the effect of different modifiers on the extraction of a mixture of pesticides from soil has also been investigated.  相似文献   

5.
For many applications using supercritical fluid extraction (SFE), modifiers may be required.This paper will present some findings regarding the use of various modifiers including methanol, hexane, acetone, chloroform, dichloromethane, toluene, and tributylphosphate, in on-line and off-line SFE with cryogenic adsorbent trapping. The specific applications involved the extractions of petroleum hydrocarbons and pesticides from naturally incurred soils.  相似文献   

6.
Summary A mini extractor of 85 L void volume and a micro extractor of 3–4 L void volume have been coupled directly with a packed column SFC and used under sub- and supercritical conditions. The mini extractor is suitable for holding adsorbates which can be on-line extracted and the extract chromatographed (direct SFE-SFC). The micro extractor can be used for direct sample introduction of liquid and solid materials under SF conditions. Thus any solvent interference with the sample and the chromatographic conditions is excluded. Standard samples of wood tar residue, engine oil, and metal organic compounds have been tested.  相似文献   

7.
A simple and versatile system is described for the on-line coupling of SFE to capillary GC. The interfacing consists of a programmed temperature vaporizer (PTV) injector. With this injector it is possible to combine solute trapping, elimination of a high flow of extraction fluid, and quantitative transfer of solutes to the seperation column. The problems caused by impurities in the extraction fluid in on-line SFE-GC are discussed. Simple methods are described for the purification of commercially available carbon dioxide. The trapping efficiency of the PTV injector is studied. Applications of the SFE-PTV-GC system are given for the analysis of polymer anti-degradants, polar compounds, and samples with environmental relevance.  相似文献   

8.
9.
An on-line SFE-chromatographic system, where SFE has been coupled with SFC and GC, was developed and utilized for trace analyses of organochlorine and organophosphorus pesticide residues from gram-sized complex sample matrices, such as chicken fat, ground beef, and lard. The SFE process and chromatographic techniques were instrumentally integrated for efficient and automated on-line analysis, having minimal sample handling between the sample preparation and separation steps. A cleanup step, incorporating packed column SFC, allowed the fractionation of relatively small-sized, non-polar pesticides from the co-extracted fatty materials. This permitted final high-resolution separation of analytes on a capillary GC column. Detection of pesticides was accomplished using selective electron-capture and nitrogen-phosphorus detectors. Pesticide concentrations determined with the on-line system were accurate and reproducible, for fatty samples containing both fortified and incurred pesticides. This method, utilizing supercritical carbon dioxide, was considerably faster and less laborious than the conventional analytical procedures based on liquid extraction.  相似文献   

10.
11.
Headspace solid phase microextraction (HS-SPME) in-situ supercritical fluid extraction (SFE) was investigated for the determination of trace amounts of perfluorocarboxylic acids (PFCAs) in sediments. Quantitation was performed by using gas chromatography coupled to negative chemical ionization-tandem mass spectrometry (GC-NCI-MS/MS). The optimum conditions of HS-SPME following SFE were obtained using 500 μL n-butanol as a derivatization reagent in supercritical carbon dioxide with static extraction for 10 min, then dynamic extraction for 20 min at 30 MPa and 70 °C and simultaneous collected with 100 μm film thickness PDMS fiber. The linear range of proposed method was from 5 to 5000 ng g(-1), with limit of detection ranging from 0.39 to 0.54 ng g(-1) and limit of quantitation ranging from 1.30 to 1.80 ng g(-1). The developed method was successfully applied to analyze PFCAs in sediments from rivers and beach near industrial areas. The concentrations of PFCAs determined are from 282 to 4473 ng g(-1).  相似文献   

12.
Supercritical fluid extraction was coupled directly with high performance liquid chromatograph. The system was evaluated for direct injection of supercritical CO2 and modified supercritical CO2 at high pressure and temperature onto a HPLC system with varying mobile phase compositions and flow rates. Injection of 9 μL supercritical CO2 onto the HPLC using methanol/water mobile phases from 100% methanol to 80% with a flow of 1.0 mL/min did not adversely affect the baseline of UV detector. However at higher percentages of water, CO2 solubility in the mobile phase decreased and caused baseline interferences on the UV detector. At higher HPLC mobile phase flow rates, supercritical CO2 was injected to higher percentages of water without any effect on the UV baseline. Also, increasing the extraction pressure or modifier concentration did not change the results. Separations of polynuclear aromatic hydrocarbons and linear alkenebenzene sulfonate test mixtures were obtained using on-line SFE/HPLC interfaced system.  相似文献   

13.
14.
15.
A simple method has been developed for the direct coupling of supercritical fluid extractions (SFE) with a high resolution gas chromatograph (HRGC) equipped with an electron capture detector (ECD). SFE conditions have been investigated for polychlorinated biphenyls (PCBs) from sediments in terms of mobile phase, entrainer, pressure, temperature, and mass-flow through the extractor. Dynamic leaching and static steady-state extractions were compared. Extraction efficiencies of up to 100% in less than 15 minutes have been obtained. The extracted PCBs are quantitatively transferred into a fused silica open tubular column (OTC). Determination of PCBs was tested on certified sediment from National Water Research Institute and the results agreed well with certified values.  相似文献   

16.
A method in combination with derivatization-supercritical fluid extraction(SFE) and gas chromatography(GC) for the speciation and quantitative determination of dimethylarsinate(DMA), monomethylarsonate(MMA) and inorganic arsenic in solid matrices was investigated. Thioglycolic acid methyl ester(TGM) and thioglycolic acid ethyl ester(TGE) were evaluated as derivatization reagents. The effects of pressure, temperature, flow rate of supercritical CO_2, extraction time, modifier and microemulsion on the efficiency of extraction were systematically investigated. The procedure was applied to the analysis of real soil and sediment samples. Results showed that TGE was more effective for arsenic speciation as a derivatization reagent. Modifying supercritical CO_2 with methanol can greatly improve the extraction efficiency. Further, the addition of microemulsion containing surfactant Triton X-100 can further enhance recoveries of arsenic species. The optimum extraction conditions were 100 ℃, 30 MPa, 10 min static and 25 min dynamic extraction with 5%(v/v) methanol, and surfactant modified supercritical CO_2. Detection limits in solid matrices were 0.15, 0.3 and 1.2 mg/kg for DMA, MMA and inorganic arsenic,respectively. The method was validated by the recovery data. The resulting method was fast, easy to perform and selective in the extraction and detection of various arsenic species in solid matrices.  相似文献   

17.
Summary This work describes the study of a degradation curve of Oxadixyl in field-treated potato and tomato samples. The residues were extracted using classical and supercritical fluid (SFE) extraction methods and analyzed by HRGC/ECD. The extraction techniques were compared and the results indicate the advantages of using SFE as an alternative method for pesticide analyses in these samples.  相似文献   

18.
19.
In order to meet the requirements of analyzing very low concentrations of pesticides in water (typically at 0.1 μg/l or less), samples have to be concentrated prior to GC-analysis. Samplie pre-concentration by off-line methods based on solid phase extraction (SPE) or liquid-liquid extraction are very time consuming and cumbersome. Moreover, the quantitative performance of the analytical method as a whole in terms of accuracy and reliability is seriously hindered by elaborate, manually performed sample pre-treatment steps. This paper describes an automated method based on solid phase extraction and capillary gas chromatography. The technique was applied for the analysis of 31 polar organophosphorus and organonitrogen pesticides. A commercially available HPLC/GC instrument is modified, using the LC-part for solid phase extraction. The sample, of which only a few ml's is required to obtain sufficiently low detection limits, is delivered by a robotic large volume autosampler. After solid phase extraction and elution, the eluate is transferred into the GC via a so called “loop type interface”. In this paper the instrumentation and analytical methodology is described, as well as the main validation results. The quantitative performance (i.e. recovery and repeatability) of the most polar solutes like metamitron and dimethoate appears to be better than obtained with off-line SPE as a result of the more beneficial ratio between the amount of sorbent and the sample volume. As the loop-type interface causes losses of the most volatile compounds, a co-solvent is added. This co-solvent provides sufficient trapping capacity in the capillary pre-columns to allow quantitative analysis of even the most volatile pesticides. Moreover a better separation of early eluting compounds is also established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号