首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a parallel multigrid finite volume solver for the prediction of steady and unsteady flows in complex geometries is presented. For the handling of the complexity of the geometry and for the parallelization a unified approach connected with the concept of block-structured grids is employed. The parallel implementation is based on grid partitioning with automatic load balancing and follows the message-passing concept, ensuring a high degree of portability. A high numerical efficiency is obtained by a non-linear multigrid method with a pressure correction scheme as smoother. By a number of numerical experiments on various parallel computers the method is investigated with respect to its numerical and parallel efficiency. The results illustrate that the high performance of the underlying sequential multigrid algorithm can largely be retained in the parallel implementation and that the proposed method is well suited for solving complex flow problems on parallel computers with high efficiency.  相似文献   

2.
The solution of the Poisson's equation used by the incompressible smoothed particle hydrodynamics (ISPH) methods for estimating the pressure field is expensive in CPU time. The CPU time, consumed by the inversion of the operator ∇(1/ρ∇) and the estimation of the right hand side of the Poisson's equation, increases with the number N of particles used in a purely Lagrangian framework. In this work, this default of ISPH methods is overcome by solving the Poisson's equation on a Cartesian grid. This SPH-mesh coupling is equivalent to the particle in cell method. In a first step, in order to analyze its efficiency, the optimized version of two ISPH methods (divergence free and density invariant) is compared with the standard weakly compressible SPH method through two benchmarks of incompressible bidimensional flows characterized by the Reynolds number Re, Lamb-Oseen vortex (10 ≤Re≤ 100) and lid-driven cavity flow (100 ≤Re≤ 1000). In a second step, the numerical results obtained by the three SPH methods are compared to laboratory experimental data of a dam break flow in order to show the performance of the SPH-mesh coupling in a practical and complex flow problem. As in the configuration of the experimental setup, the numerical results are obtained for a Reynolds number Re = 3.8 106.  相似文献   

3.
A numerical method for the efficient calculation of three‐dimensional incompressible turbulent flow in curvilinear co‐ordinates is presented. The mathematical model consists of the Reynolds averaged Navier–Stokes equations and the k–ε turbulence model. The numerical method is based on the SIMPLE pressure‐correction algorithm with finite volume discretization in curvilinear co‐ordinates. To accelerate the convergence of the solution method a full approximation scheme‐full multigrid (FAS‐FMG) method is utilized. The solution of the k–ε transport equations is embedded in the multigrid iteration. The improved convergence characteristic of the multigrid method is demonstrated by means of several calculations of three‐dimensional flow cases. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

4.
This paper describes the implementation and performances of a parallel solver for the direct numerical simulation of the three‐dimensional and time‐dependent Navier–Stokes equations on distributed‐memory, massively parallel computers. The feasibility of this approach to study Marangoni flow instability in half zone liquid bridges is examined. The results indicate that the incompressible, non‐linear Navier–Stokes problem, governing the Marangoni flows behavior, can effectively be parallelized on a distributed memory parallel machine by remapping the distributed data structure. The numerical code is based on a three‐dimensional Simplified Marker and Cell (SMAC) primitive variable method applied to a staggered finite difference grid. Using this method, the problem is split into two problems, one parabolic and the other elliptic A parallel algorithm, explicit in time, is utilized to solve the parabolic equations. A parallel multisplitting kernel is introduced for the solution of the pseudo pressure elliptic equation, representing the most time‐consuming part of the algorithm. A grid‐partition strategy is used in the parallel implementations of both the parabolic equations and the multisplitting elliptic kernel. A Message Passing Interface (MPI) is coded for the boundary conditions; this protocol is portable to different systems supporting this interface for interprocessor communications. Numerical experiments illustrate good numerical properties and parallel efficiency. In particular, good scalability on a large number of processors can be achieved as long as the granularity of the parallel application is not too small. However, increasing the number of processors, the Speed‐Up is ever smaller than the ideal linear Speed‐Up. The communication timings indicate that complex practical calculations, such as the solutions of the Navier–Stokes equations for the numerical simulation of the instability of Marangoni flows, can be expected to run on a massively parallel machine with good efficiency. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
Electrical double-layer effects are unimportant in flows through porous media except when the Debye length k?1 is comparable in magnitude with the pore radius a. Under these conditions the equations governing the flow of electrolyte are those of Stokes, Nernst-Planck and Poisson. These equations are non-linear and require numerical solution. The finite element method provides a useful basis for solution and various algorithms are investigated. The numerical stability and errors of each scheme are analysed together with the development of an appropriate finite element mesh. The electro-osmotic flow of a typical electrolyte (barium chloride) through a uniformly charged cylindrical membrane pore is investigated and the ion fluxes are post-computed from the numerical solutions. The ion flux is shown to be strongly dependent on both zeta potential and pore radius, ka, indicating the effects of overlapping electrical double layers.  相似文献   

6.
格子-波尔兹曼法是近年来新兴的一种计算流体力学数值方法。随着这种方法的不断发展,人们将它用于流体的仿真、优化等不同场合。与此同时,一些与流场流速和压强相关的物理量(如能耗)的求解也成为关注的焦点。本文介绍了能耗这一流体宏观量的格子-波尔兹曼法求解及其实现。与传统的有限差分法不同,本文在求解有关的速度梯度时使用了格子-波尔兹曼-矩法,这种方法不但能够避免有限差分法在边界处失效的缺点,而且计算简单,算法局部性好,适合大规模并行计算。本文在分析其数值解精度的基础上,使用这种方法进行了以能耗极小为目标的直通道内椭圆挡块的参数优化。这些分析和算例分别定量和定性地说明了本文算法的准确性。  相似文献   

7.
This paper presents a p- version least squares finite element formulation (LSFEF) for two-dimensional, incompressible, non-Newtonian fluid flow under isothermal and non-isothermal conditions. The dimensionless forms of the diffential equations describing the fluid motion and heat transfer are cast into a set of first-order differential equations using non-Newtonian stresses and heat fluxes as auxiliary variables. The velocities, pressure and temperature as well as the stresses and heat fluxes are interpolated using equal-order, C0-continuous, p-version hierarchical approximation functions. The application of least squares minimization to the set of coupled first-order non-linear partial differential equations results in finding a solution vector {δ} which makes the partial derivatives of the error functional with respect to {δ} a null vector. This is accomplished by using Newton's method with a line search. The paper presents the implementation of a power-law model for the non-Newtonian Viscosity. For the non-isothermal case the fluid properties are considered to be a function of temperature. Three numerical examples (fully developed flow between parallel plates, symmetric sudden expansion and lid-driven cavity) are presented for isothermal power-law fluid flow. The Couette shear flow problem and the 4:1 symmetric sudden expansion are used to present numerical results for non-isothermal power-law fluid flow. The numerical examples demonstrate the convergence characteristics and accuracy of the formulation.  相似文献   

8.
In this paper, a direct numerical simulation of a fully developed turbulent flow and heat transfer are studied in a square duct with an imposed temperature difference between the vertical walls and the perfectly insulated horizontal walls. The natural convection is considered on the cross section in the duct. The numerical scheme employs a time-splitting method to integrate the three dimensional incompressible Navier-Stokes equation. The unsteady flow field was simulated at a Reynolds number of 400 based on the Mean friction velocity and the hydraulic diameter (Re m = 6200), while the Prandtl number (Pr) is assumed 0.71. Four different Grashof numbers (Gr = 104, 105, 106 and 107) are considered. The results show that the secondary flow and turbulent characteristics are not affected obviously at lower Grashof number (Gr ≤ 105) cases, while for the higher Grashof number cases, natural convection has an important effect, but the mean flow and mean temperature at the cross section are also affected strongly by Reynolds stresses. Compared with the laminar heat transfer at the same Grashof number, the intensity of the combined heat transfer is somewhat decreased.  相似文献   

9.
A collocation-type boundary element method based on bilinear B-splines is used for the numerical solution of the Stokes Dirichlet problem in bounded domains D ? R3. The computation of the influence matrix requires the numerical evaluation of weakly singular integrals on the domain boundary if the usual double-layer potential ansatz is chosen. Here mostly standard methods with disjoint grids for collocation and integration are used. We develop a special integration scheme based on triangular co-ordinates near the singularity and show its efficiency compared with the method mentioned above.  相似文献   

10.
Using variable‐size particles in the moving particle semi‐implicit method (MPS) could lead to inaccurate predictions and/or numerical instability. In this paper, a variable‐size particle moving particle semi‐implicit method (VSP‐MPS) scheme is proposed for the MPS method to achieve more reliable simulations with variable‐size particles. To improve stability and accuracy, a new gradient model is developed based on a previously developed MPS scheme that requires no surface detection MPS. The dynamic particle coalescing and splitting algorithm is revised to achieve dynamic multi‐resolution. A cubic spline function with additional function is employed as the kernel function. The effectiveness of the VSP‐MPS method is demonstrated by three verification examples, that is, a hydrostatic pressure problem, a complicated free surface flow problem with large deformation, and a dynamic impact problem. The new VSP‐MPS scheme with variable‐size particles is found to have balanced efficiency and accuracy that is suitable for simulating large systems with complex flow patterns. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We study numerically a recently introduced formulation of incompressible Newtonian fluid equations in vorticity–helical density and velocity–Bernoulli pressure variables. Unlike most numerical methods based on vorticity equations, the current approach provides discrete solutions with mass conservation, divergence‐free vorticity, and accurate kinetic energy balance in a simple and natural way. The method is applied to compute buoyancy‐driven flows in a differentially heated cubic enclosure in the Boussinesq approximation for Ra ∈ {104,105,106}. The numerical solutions on a finer grid are of benchmark quality. The computed helical density allows quantification of the three‐dimensional nature of the flow. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
This paper describes a direct numerical simulation (DNS) study of turbulent flow over a rectangular trailing edge at a Reynolds number of 1000, based on the freestream quantities and the trailing edge thickness h; the incoming boundary layer displacement thickness δ* is approximately equal to h. The time-dependent inflow boundary condition is provided by a separate turbulent boundary layer simulation which is in good agreement with existing computational and experimental data. The turbulent trailing edge flow simulation is carried out using a parallel multi-block code based on finite difference methods and using a multi-grid Poisson solver. The turbulent flow in the near-wake region of the trailing edge has been studied first for the effects of domain size and grid resolution. Then two simulations with a total of 256 × 512 × 64 (∼ 8.4×106) and 512 × 1024 × 128 (∼ 6.7×107) grid points in the computational domain are carried out to investigate the key flow features. Visualization of the instantaneous flow field is used to investigate the complex fluid dynamics taking place in the near-wake region; of particular importance is the interaction between the large-scale spanwise, or Kármán, vortices and the small-scale quasi-streamwise vortices contained within the inflow boundary layer. Comparisons of turbulence statistics including the mean flow quantities are presented, as well as the pressure distributions over the trailing edge. A spectral analysis applied to the force coefficient in the wall normal direction shows that the main shedding frequency is characterized by a Strouhal number based on h of approximately 0.118. Finally, the turbulence kinetic energy budget is analysed. Received 4 March 1999 and accepted 27 October 2000  相似文献   

13.
An efficient parallel spectral method for direct numerical simulations of transitional and turbulent flows is described in this paper. The parallelization is classically based on a bidimensional domain decomposition, but has been specifically developed for a solenoidal Fourier–Chebyshev spectral approximation where in one Fourier direction, the number of modes is very large compared with the two other directions. The approach therefore differs from classical libraries developed for cubic Fourier boxes. The strategy uses message‐passing interface (MPI) for message‐passing among nodes and is fairly portable. One of the originalities of this paper is the use of an efficient hybrid programming with MPI for internodes communications and a coarse grain parallelism using OpenMP for core shared‐memory computation, instead of the classical hybrid programming with MPI and a fine granularity parallelism at the loop level with OpenMP directives. This hybrid parallelism has been tested on the recent generation of high‐performance parallel supercomputers involving a few tens of cores per node. Performances are evaluated on different low‐frequency and high‐frequency processors massively parallel platforms. We demonstrate that spectral methods, which are known to be inherently ill‐fitted for the new generation of high‐performance distributed‐memory computers, can be implemented efficiently using this hybrid programming with good scalability and a very fast wall‐clock time per iteration. New numerical experiments are therefore now accessible on petascale computers, while keeping the attractive features of spectral methods such as accuracy, exponential convergence, computational efficiency and conservative properties. This is illustrated by a direct numerical simulation of the transition of the boundary layers developing from the entrance section of a plane channel and interacting to merge into a fully turbulent flow. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, the domain decomposition method (DDM) and the general boundary element method (GBEM) are applied to solve the laminar viscous flow in a driven square cavity, governed by the exact Navier–Stokes equations. The convergent numerical results at high Reynolds number Re = 7500 are obtained. We find that the DDM can considerably improve the efficiency of the GBEM, and that the combination of the domain decomposition techniques and the parallel computation can further greatly improve the efficiency of the GBEM. This verifies the great potential of the GBEM for strongly non‐linear problems in science and engineering. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
16.
The fluid flow field within an enclosed cylindrical chamber with a rotating flat disc was calculated using a finite volume computational fluid dynamics (CFD) model and compared with particle image velocimetry (PIV) measurements. Two particular laminar cases near the Transitional flow regime were investigated: Reynolds number Re=2.5×1 4, chamber aspect ratio G (h/Rd)=0.2 and Re=4.2×104, G (h/Rd)=0.217. This enabled direct comparison with the numerical and experimental results reported by other researchers. The computational details and some major factors that affect the computed accuracy and convergence speed are also discussed in detail. PIV results containing some 4300 velocity vector points in each of seven planes for each case were obtained from the flow field parallel to the rotating disc. It was found that PIV results could be obtained in planes within the boundary layers as well as the core flow by careful use of a thin laser illumination sheet and correct choice of laser pulse separation. There was close agreement between numerical results, the present PIV measurements and other reported experimental and numerical results.  相似文献   

17.
A new boundary element method is described for calculation of the steady incompressible laminar flows. The method is based on the well-known SIMPLE algorithm. The new boundary element method allows one to find the fields of the pressure and velocity corrections without inner iterations, thus reducing the computational time drastically. This makes it different from the method developed by Patankar and Spalding.32 However, the new method demands a much larger computer strorage. The boundary integral equations are discretized with the help of constant boundary elements and constant cells. The values of the integrals along the boundary elements and the cells for the two-dimensional domain are found analytically. To preserve the stability in the iteration process, under-relaxation for the convection terms is used. This paper gives the results of calculations of the flows between two plane parallel plates at Re = 20 and Re = 200, the flows in a square cavity with a moving upper lid at Re = 1 and Re = 100 and the flow in a plane channel with sudden symmetric expansion at Re =46·6.  相似文献   

18.
A parallel large eddy simulation code that adopts domain decomposition method has been developed for large‐scale computation of turbulent flows around an arbitrarily shaped body. For the temporal integration of the unsteady incompressible Navier–Stokes equation, fractional 4‐step splitting algorithm is adopted, and for the modelling of small eddies in turbulent flows, the Smagorinsky model is used. For the parallelization of the code, METIS and Message Passing Interface Libraries are used, respectively, to partition the computational domain and to communicate data between processors. To validate the parallel architecture and to estimate its performance, a three‐dimensional laminar driven cavity flow inside a cubical enclosure has been solved. To validate the turbulence calculation, the turbulent channel flows at Reτ = 180 and 1050 are simulated and compared with previous results. Then, a backward facing step flow is solved and compared with a DNS result for overall code validation. Finally, the turbulent flow around MIRA model at Re = 2.6 × 106 is simulated by using approximately 6.7 million nodes. Scalability curve obtained from this simulation shows that scalable results are obtained. The calculated drag coefficient agrees better with the experimental result than those previously obtained by using two‐equation turbulence models. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
An experimental and numerical study has been carried out to investigate the heat transfer characteristics of a horizontal circular cylinder exposed to a slot jet impingement of air. A square-edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the bottom of the cylinder. The study is focused on low Reynolds numbers ranging from 120 to 1,210, Grashof numbers up to Gr = 10Re 2 and slot-to-cylinder spacing from 2 to 8 of the slot width. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. A Mach–Zehnder Interferometer is used for measurement of local Nusselt number around the cylinder at 10° interval. It is observed that the average Nusselt number decreases with increasing the jet spacing and increases with rising the Reynolds number. A finite volume method utilizing a curvilinear coordinate transformation is used for numerical modeling. The numerical results show good agreement with the experimental results. The flow and thermal field are seen to be stable and symmetric around the cylinder over the range of parameters studied.  相似文献   

20.
We developed a framework for a distributed-memory parallel computer that enables dynamic data management for adaptive mesh refinement and load balancing. We employed simple data structure of the building cube method (BCM) where a computational domain is divided into multi-level cubic domains and each cube has the same number of grid points inside, realising a multi-level block-structured Cartesian mesh. Solution adaptive mesh refinement, which works efficiently with the help of the dynamic load balancing, was implemented by dividing cubes based on mesh refinement criteria. The framework was investigated with the Laplace equation in terms of adaptive mesh refinement, load balancing and the parallel efficiency. It was then applied to the incompressible Navier–Stokes equations to simulate a turbulent flow around a sphere. We considered wall-adaptive cube refinement where a non-dimensional wall distance y+ near the sphere is used for a criterion of mesh refinement. The result showed the load imbalance due to y+ adaptive mesh refinement was corrected by the present approach. To utilise the BCM framework more effectively, we also tested a cube-wise algorithm switching where an explicit and implicit time integration schemes are switched depending on the local Courant-Friedrichs-Lewy (CFL) condition in each cube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号