首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Miscible blends of polystyrene (PS) and poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) were prepared by a solution casting method to examine the permeation characteristics for oxygen and nitrogen. Gas permeation characteristics of PS/PPO membranes prepared using two different methods, slowly cooled and quenched, after being treated at various annealing temperatures were examined with respect to the controlled free volume. A variety of compositions of PS/PPO membranes provided varying permeability coefficients and ideal separation factors. This indicates that the present miscible blends gave rise to a decrease in the free volume by the physical interaction between two polymer components. For the slowly cooled PS/PPO membranes, the permeability coefficient decreased but the ideal separation factor increased with decreasing annealing temperatures due to the fast macromolecular relaxation or the efficient packing effect of macromolecular chains. On the other hand, the permeability coefficient of the quenched PS/PPO membranes increased with increasing annealing temperatures, as the quenching from higher annealing temperatures led to the existence of more free volume.  相似文献   

2.
A high degree of nitration of polyphenylene oxide (PPO) was successfully achieved by carefully optimizing synthetic protocol. The reduction of nitro group to amino could be done quantitatively. The physical properties of formed polymers were investigated and correlated with gas sorption and permeation properties. The formed polymers were amorphous in nature as revealed by wide angle X-ray diffraction spectra. An increase in the packing density in comparison to unsubstituted PPO as a result of induced polarity was indicated by lowering of fractional free volume and d-spacing. The substitution by either nitro or amino group increased the chain stiffness as revealed by the dynamic mechanical analysis. Though both, nitro and amino group substitution on PPO led to a decrease in pure gas permeability, the selectivity of various gas pairs was increased by these substitutions. The gas sorption analysis revealed that both, solubility selectivity and diffusivity selectivity were increased by these polar group substitutions. The nitro group substitution was more effective in improving solubility selectivity, while amino group substitution was more effective in improving diffusivity selectivity.  相似文献   

3.
Analog calorimetry is used as a tool to study the interaction of polystyrene, PS, with poly(2,6-dimethyl-1,4-phenylene oxide), PPO, and with poly(1,4-phenylene oxide). Electrostatic charge calculations were used as a guide to divide polymer repeat units and analogs into groups. A mean-field binary interaction model was used to cvaluate group interaction energies. The enthalpic interaction energy for the blend of PS-PPO obtained from this study is −1.35 ± 0.19 cal/cm3, which is in good agreement with values obtained from neutron scattering. The results indicate that electronic rearrangements between the phenyl ring and substituted methyl groups in PPO have a large influence on the interaction with polystyrene. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
5.
The effect that substitution of aromatic groups on the bisphenol connector unit of bisphenol-A based polycarbonate and polysulfone materials has on their gas transport properties was assessed. Replacement of a methyl group by a phenyl ring (bisphenol acetophenone polycarbonate, PC-AP, and bisphenol acetophenone polysulfone, PSF-AP) gives a small increase in permeability coefficients with similar or slightly higher selectivity for all gases compared to bisphenol-A polycarbonate, PC, or polysulfone, PSF. Substitution of two locked phenyl rings (fluorene bisophenol polycarbonate, FBPC, and fluorene bisphenol polysulfone, FBPSF) in place of the methyl groups in the connector unit leads to permeability and solubility coeffcients that are about twice those observed for PC or PSF. Increases in permeability for the polycarbonate and polycarbonate and polysulfone materials with aromatic substitutions are related to their larger fractional free volume. FBPC and FBPSF have the largest fractional free volume and the largest permeability coefficients. Thermal measurements show that the fluorene based polycarbonate and polysulfone materials have the highest thermal and oxidative stability. Such aromatic substitutions can be useful for developing gas separation membranes to be used in harsh thermal or oxidative environments. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
An environmentally friendly one-pot synthetic method based on green chemistry was developed to prepare thermodynamically partially compatible poly(2,6-dimethyl-1,4-phenylene oxide)/poly(methylmethacrylate) (PPO/PMMA) alloy in water. The oxidative polymerization of 2,6-dimethylphenol in alkaline aqueous solution was firstly conducted and then methyl methacrylate (MMA) was added into the reactor before the end of polymerization. MMA could penetrate into PPO particles and then in situ reverse atom transfer radical polymerization (RATRP) of methyl methacrylate was initiated by 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride after the oxidative polymerization. Both the oxidative polymerization of 2,6-dimethylphenol and RATRP of methyl methacrylate were catalyzed by the complex of CuCl2 and 4-dimethylaminopyridine. Finally, thermodynamically partially compatible PPO/PMMA alloy was successfully prepared which possessed a multi-layer core-shell structure with two polymers embedded in each other.  相似文献   

7.
A method of determining the quantity of ungrafted poly(2,6-dimethyl-1,4-phenylene oxide) (PPO®
  • 1 Trademark of General Electric Company.
  • resin) in mixtures of such polyphenylene oxide or PPO resin, polystyrene (PS), and graft copolymers of PPO resin and PS is described. The technique is a combination of physical and chemical separations and gel permeation chromatographic (GPC) analysis. The extent of grafting on PPO resin and the quantity of ungrafted PPO resin were calculated from molecular weight data and compositional analysis.  相似文献   

    8.

    A new hybrid gas separation membrane was prepared from poly(2,6-dimethyl-1,4-phenylene oxide) modified with graft copolyimide with side poly(methyl methacrylate) chains. The changes in the membrane structure on introducing up to 15 wt % modifier were evaluated by atomic force microscopy and density measurements. The microphase separation in modified polyphenylene oxide films was demonstrated. Introduction of graft copolyimide leads to an increase in the density of the hybrid films. The gas transport properties of the membranes were evaluated for H2, CO2, O2, O4, and N2. Introduction of up to 10 wt % modifier does not noticeably alter the permeability of the hybrid membranes to all the gases but increases the selectivity in gas separation.

      相似文献   

    9.
    讨论了聚2,6-二甲基-1,4-苯撑氧(PPO)与三甲基氯硅烷和三苯基氯硅烷的反应,合成了一系列取代含量不同的三甲基硅取代PPO(TMS-PPO)和三苯基硅取代PPO(TPS-PPO).研究了取代基团不同和取代含量变化对聚合物的气体选择透过性能的影响,发现TMS-PPO的气体透过系数随三甲基硅取代量加大而增高,分离系数下降;TPS-PPO的气体透过系数和分离系数都随三苯基硅取代量的增加而下降,TPS-PPO与TMS-PPO的气体溶解系数相近,扩散系数差别较大.故二者气体透过系数的不同主要是由于扩散系数的差异.从化学结构与气体透过性能关系的角度来看,若在聚合物分子中引入有较小转动自由能的大基团,则有利于气体分子的扩散透过.  相似文献   

    10.
    Benzoylation of polyphenylene oxide (PPO) was carried out with aromatic acid chlorides bearing specific groups at para-position (H, methyl, Br, Cl and nitro), which differ in their polarity and bulk. The reaction conditions were optimized individually to get the high degree of substitution. These materials were characterized for thermal as well as other physical properties that are known to affect the gas permeation. In a series investigated, the nitrobenzoyl substitution on PPO resulted in the highest increase in glass transition temperature and the lowest thermal stability. An estimation of the packing density parameters—fractional free volume by density measurement and the d-spacing by X-ray diffraction analysis showed an increase in the packing density. The gas permeability was found to decrease in all the cases of benzoylation. The helium and oxygen based selectivities were increased, while CO2 based selectivities were decreased. The unusual trend observed in the gas permeation properties is explained on the basis of nature of substituent and the degree of substitution.  相似文献   

    11.
    Summary: In this work, we report superior mass transport properties of polymers prepared by the covalent coupling of supermolecular carbon cages (e.g., fullerenes, bucky balls) to a poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO) polymer. Dispersing the bucky balls into the polymer reduces gas permeability, whereas covalent bonding enhances permeability up to 80% in comparison to the pure PPO. Gas pair selectivity, however, is not compromised and stays constant.

    Schematic representation of the PPO polymer membrane and the PPO‐covalently bonded C60 polymer membrane.  相似文献   


    12.
    讨论了聚2,6-二甲基-1,4-苯撑氧(PPO)与三甲基氯硅烷和三苯基氯硅烷的反应,合成了一系列取代含量不同的三甲基硅取代PPO(TMS-PPO)和三苯基硅取代PPO(TPS-PPO)。研究了取代基团不同和取代含量变化对聚合物的气体选择透过性能的影响。发现TMS-PPO的气体透过系数随三甲基硅取代量加大而增高,分离系数下降,TPS-PPO的气体透过系数和分离系数都随三苯基硅取代量的增加而下降,TP  相似文献   

    13.
    The unperturbed chain dimensions of unfractionated poly(2-methyl-6-phenyl-1,4-phenylene oxide) and poly-(2,6-diphenyl-1,4-phenylene oxide) have been measured by combining molecular weight data from light scattering with intrinsic viscosity data in chloroform. The unperturbed chain dimensions of the former polymer were also measured directly by light scattering dissymmetry in a critical consolute solvent mixture (methyl cyclohexane: 1,4-dioxane 50:50 by volume). The results of these measurements and of measurements reported by other investigators are satisfactorily explained by postulating no dimension-expanding prejudice in azimuthal angle in chain conformers of the 2,6-substituted-1,4-phenylene oxide polymers. This corresponds to equal population of the two chain rotation energy minima at azimuthal angles 90° and 270°. Accepting this postulate, one calculates from the observed chain dimensions that the C? O? C bond angle is 118–120° in these aromatic polyethers in solution.  相似文献   

    14.
    PPO (poly(2,6-dimethyl-1,4-phenylene oxide)) is a well-known membrane material showing good gas separation properties. The incorporation of nanoparticles can enhance or deteriorate the performance of composite membranes, sometimes depending only on the way of the composite preparation. We have modified the PPO polymer with C60 fullerenes up to a content of 2 wt %. Previous investigations showed a strong dependence of permeability on whether the C60 is simply dispersed in the polymer or chemically bonded to the polymer chains. Free volume effects were suggested as an explanation but not experimentally confirmed. Here, we present free volume studies by positron annihilation lifetime spectroscopy. An additional long positron lifetime shows the increased free volume of composite samples, while the high electron affinity of C60 helps to indicate the homogeneity of the samples. Combining the presented results with permeability measurements refines the understanding of this promising membrane material.  相似文献   

    15.
    研究了 PPO、羧化 PPO(C-PPO)、苯酰化 PPO(BA-PPO)、苯磺酰化 PPO(BS-PPO)和磺化 PPO(S-PPO)在不同溶剂中的溶解能力,分别讨论了各种取代基以及取代度对溶解性能的影响,测定了各种改性 PPO 在溶剂中的特性粘数,估计了它们的溶度参数。发现,在 PPO 的溶解过程中,色散力起重要作用,S-PPO 样品的溶解过程则是极性力和氢键起主导作用,而 BA-PPO 和 BS-PPO 的溶解过程则是三种力相互作用的结果。对于不同取代度的 C-PPO,随取代度增加,在极性和形成氢键的溶剂中的溶解能力增加。  相似文献   

    16.
    The chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) by bromination of the aromatic ring, followed by displacement of bromine with substituted acetylenes, has been investigated. This pathway leads to a series of novel copolymers containing substituted alkynes on the aromatic ring. The degree of bromination and alkynylation, determined by 1H-NMR, was in the range of 20–85 and 15–80%, respectively. 13C-NMR and FT-IR unambiguously elucidated the structure of the alkynylated polymers. Finally, thermal properties and permeation properties of substituted PPO to carbon dioxide, methane, oxygen, and nitrogen are reported. © 1994 John Wiley & Sons, Inc.  相似文献   

    17.
    Low-temperature internal motions of the following polyesters have been investigated by broad line nuclear magnetic resonance: poly(methylene terephthalates) (2–6 methylene groups), poly[1,4-(dimethylene)cyclohexylene terephthalate], poly(diethyleneglycol terephthalate), poly(1,2-propylene terephthalate), poly(1,4-phenylene terephthalate), poly(2,2,3,3,4,4-hexafluoropentamethylene terephthalate), poly[1,4-phenylenebis(dimethyl) siloxane], and poly(2,6-dimethylphenylene oxide). No complex line structure was found for any of the samples. Molecular motions in the polyesters appear to be restricted by polar forces arising from the ester groups. Above—196°C. the line width decreases smoothly with increasing temperatures for all polymers except poly[1,4-(dimethylene)cyclohexylene terephthalate] and poly[1,4-phenylenebis(dimethyl)siloxane]. These two show a definite transition in line width at ?20°C. and +12°C., respectively, caused by the onset of considerable internal motion. At ?196°C. the lattices are rigid except for polymers containing methyl groups: poly(1,2-propylene terephthalate), poly[1,4-phenylenebis(dimethyl) siloxane], and poly(2,6-dimethylphenylene oxide). Internal motion that can be ascribed to be a reorientation of the methyl groups is present at ?196°C. for these three polymers, as is demonstrated by comparison of experimental second moments and those calculated on the basis of various models.  相似文献   

    18.
    By fluorescence spectroscopy it is possible to investigate some of the photophysical processes, particularly the energy transfer, that occur during the photo-oxidative degradation of polystyrene (PS), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), and homogeneous blends of these. In connection with the irradiation, a part of the absorbed energy is transferred from excited phenyl groups in PS to PPO. The decrease in PS excimer fluorescence at 319 nm by admixture of PPO is greater than expected from the absorption of PPO at the excitation wavelength. A radiative energy transfer is suggested from PS to PPO which absorbs at 319 nm. Energy transfer also occurs to groups formed during photo-oxidation. The quenching of PS excimer fluorescence during the process has been studied for both the homopolymer and the blends, and in all cases the reactions occurring during photo-oxidation result in marked quenching at 319 nm.  相似文献   

    19.
    将聚苯醚硝化、还原,分别合成了硝化聚苯醚和胺化聚苯醚,最高硝基、氨基取代度分别为95%、65%.讨论了各种反应条件对取代度的影响,并对修饰改性的聚苯醚进行了表征。  相似文献   

    20.
    The gas permeability and sorption of CO2 and N2O was measured on cardo-poly(ether-ether-ketone) (C-PEEK) and poly(phenylene sulfide) (PPS) at 298 K. The results are discussed on the basis of the dual-mode model. Results obtained from measurements at 308 K are compared with literature data of poly(phenylene oxide) (PPO), poly(sulfone) (PSU) and poly(carbonate) (PC). While C-PEEK shows similar transport properties as PC and PSU, the values of PPS are distinctly lower. The solubility of CO2 in the various polymers as well as the correlation of the permeability coefficients of the same polymers for He, Ar, CO2, N2, and CH4 with the kinetic molecular diameter of the gases indicate a simple relation of the transport properties with the polymer density.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号