首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
P-polarized far-infrared emission spectra from KCl polycrystalline films were observed around the reststrahlen band at temperatures from 40° C up to 530° C. Based upon the virtual mode theory of thin films these were analyzed using a dielectric response function in which an empirical phonon self-energy is considered. From this analysis the empirical forms for the self-energy around the reststrahlen band were obtained at various temperatures, and also the renormalized quasiharmonic TO and LO mode frequencies and dampings were estimated at appropriate temperatures.  相似文献   

2.
Atomic vibrations due to stretching or bending modes cause optical phonon modes in the solid phase. These optical phonon modes typically lie in the frequency range of 102 to 104 cm−1. How much can the frequency of optical phonon modes be lowered? Herein we show an extremely low-frequency optical phonon mode of 19 cm−1 (0.58 THz) in a Rb-intercalated two-dimensional cyanide-bridged Co–W bimetal assembly. This ultralow frequency is attributed to a millefeuille-like structure where Rb ions are very softly sandwiched between the two-dimensional metal–organic framework, and the Rb ions slowly vibrate between the layers. Furthermore, we demonstrate temperature-induced and photo-induced switching of this low-frequency phonon mode. Such an external-stimulation-controllable sub-terahertz (sub-THz) phonon crystal, which has not been reported before, should be useful in devices and absorbers for high-speed wireless communications such as beyond 5G or THz communication systems.

Extremely low-frequency optical phonon mode in Rb-intercalated two-dimensional cyanide-bridged Co–W bimetal assembly and its temperature- and photo-induced switching effect.  相似文献   

3.
The photodimerization reaction in 7-methoxycoumarin (7MC) in the crystalline state is shown to be mediated by a lattice phonon. The phonon participation is through a mode softening in the excited state of the crystal on photoirradiation and not via strong exciton—phonon coupling as in generally observed. IR and Raman spectroscopy were used to characterize the reactant and product, and it is confirmed that the reaction occurs by cyclobutane ring formation through the bond of the pyrone ring. Electronic spectroscopy suggests that the exciton—phonon coupling is weak in the monomer crystal.  相似文献   

4.
The solid state photodimerization reaction ofo-methoxy cinnamic acid is shown to be mediated by a lattice phonon. The phonon participation, in this case, is through a mode softening and not through strong exciton-phonon coupling as is generally observed. Raman phonon spectroscopy suggests that the reaction is heterogeneous. Infrared spectroscopy has been used to study the internal vibrations of the reactant and the product. Partly presented at the International Laser Science Conference II, 1986 held at Seattle, USA.  相似文献   

5.
The one-phonon inelastic low energy helium atom scattering theory is adapted to cases where the target monolayer is a p(1 × 1) commensurate square lattice. Experimental data for para-H(2)/NaCl(001) are re-analyzed and the relative intensities of energy loss peaks in the range 6 to 9 meV are determined. The case of the H(2)/NaCl(001) monolayer for 26 meV scattering energy is computationally challenging and difficult because it has a much more corrugated surface than those in the previous applications for triangular lattices. This requires a large number of coupled channels for convergence in the wave-packet-scattering calculation and a long series of Fourier amplitudes to represent the helium-target potential energy surface. A modified series is constructed in which a truncated Fourier expansion of the potential is constrained to give the exact value of the potential at some key points and which mimics the potential with fewer Fourier amplitudes. The shear horizontal phonon mode is again accessed by the helium scattering for small misalignment of the scattering plane relative to symmetry axes of the monolayer. For 1° misalignment, the calculated intensity of the longitudinal acoustic phonon mode frequently is higher than that of the shear horizontal phonon mode in contrast to what was found at scattering energies near 10 meV for triangular lattices of Ar, Kr, and Xe on Pt(111).  相似文献   

6.
Density functional perturbation theory has been applied to study the surface vibrations of (2 × 2)-K monolayer on the Be(0001) surface. We present the full phonon dispersion curves along the high symmetry directions of the surface Brillouin zone (SBZ) together with the layer-projected phonon density of states and the phonon-induced surface charge density oscillations at Γ and M for the alkali SV and L modes. Surprisingly, at the M point, the L-phonon displacements produce a more pronounced perturbation on the surface charge density than the SV-phonon displacements. These results apparently solve the long-standing question regarding helium atom scattering (HAS) experiments performed on the similar system (2 × 2)-K on graphite, where the alkali SV phonon mode is not observed. Moreover, this result confirms the previous finding that HAS from free-electron metal surfaces probes directly the phonon-induced charge density oscillations and the related electron-phonon interaction.  相似文献   

7.
Time-resolved transient absorption technique is used to investigate the thickness dependence of acoustic phonon modes of silver nanoprisms with two thicknesses, 7.8 ± 1.2 and 8.5 ± 0.69 nm, and a similar bisector length of 31.4 ∼ 31.6 nm. Coherent acoustic phonon signals are observed. A new acoustic phonon frequency within 7.81 cm−1 ∼ 11.7 cm−1 is found and this phonon mode is associated with the thickness of the nanoprism. Another phonon frequency between 1.95 cm−1 and 1.71 cm−1 is also observed, and its origin can be associated with the bisector length of the nanoprism.  相似文献   

8.
Based on the density functional theory, we obtain the optimum geometry of carbon chain inside a carbon nanotube. The phonon spectrum and specific heat of such a chain and nanotube hybrid system are calculated in terms of lattice dynamics theory. Some new phonon branches that have been obtained come from the coupling vibrations of the nanotube and the chain. The bending and stretching modes of the chain appear at about 520 cm(-1)and 1935 cm(-1) at Gamma point, respectively. It is found that the softening of G modes results mainly from the chain induced variations in the bond length on nanotube, independent of van der Waals interaction, while the stiffening of radial breathing mode is developed by the competition between the two factors. In the low-frequency region, the vibrational density of states are very different from that of the bare nanotube. Its specific heat implies the underlying quantized phonon structures and much large thermal conductivity in the hybrid system. In addition, the chain-length dependent vibration modes are calculated, from which it is expected that a finite chain of about 14 carbon atoms in the nanotube may produce the experimental Raman peak at about 1850 cm(-1).  相似文献   

9.
Low temperature phosphorescence spectra of pyrene-PMDA (pyromellitic acid dianhydride) imbedded in a naphthalene-PMDA host crystal are reported. The spectra exhibit resolved zero-phonon and multi-phonon structure which is significant since the phosphorescent state is characterized by ≈36% charge-transfer character. Several different phonons contribute to the structure with the dominant phonon having ground and excited state (from hot band analysis) frequencies of 25 and 15 cm?1. The linear electronphonon coupling strength for the 25cm?1 phonon is computed. This phonon is tentatively assigned to rotational motion of the rigid complex. Linewidth data yield a relaxation time of 0.4 ps at 2 K for the 25 cm?1 phonon which is believed to be a pseudolocalized or resonant mode.  相似文献   

10.
Phonons in GdBaCo2O5.5 have been identified using infrared spectroscopy and their mode assignments have been carried out using ab initio lattice dynamical calculations. Metal insulator transitions in undoped and nickel-doped GdBaCo2O5.5 have been probed using infrared absorption spectroscopy. The phonon modes corresponding to the bending mode of the CoO6 octahedra/pyramids are seen to soften, broaden and develop an asymmetry across the insulator-metal transition pointing to extensive electron phonon interaction effects in these systems. Correlated changes of the phonon line shape parameters associated with the transition indicate a suppression of TMIT with increased nickel doping of the cobalt sublattice. Temperature dependence of the octahedral stretching mode frequencies in undoped GdBaCo2O5.5 points to distinct structural distortions accompanying the high temperature metallic transition.  相似文献   

11.
12.
《Vibrational Spectroscopy》2007,43(2):284-287
Geometrically frustrated pyrochlore Y2Ru2O7, which shows a spin-glass-like transition at TG  80 K, were investigated by temperature-dependent Raman scattering. Three discernable phonons appear around 315, 410, and 510 cm−1 without any abrupt change in the number of Raman active modes within the temperature range of 10–300 K. Fitting each phonon with Lorentz oscillators, we analyzed the effects of temperature on the phonon frequencies and the linewidths. The temperature-dependence of the mode near 510 cm−1 shows abnormal behavior below TG, while the other two phonons follow the usual thermal effect of lattice vibration. This behavior can be understood in terms of spin–phonon coupling. Considering the atomic modulations of each phonon mode, it is conjectured that the 510 cm−1 phonon mode is isotropically coupled to the spin degree of freedom, while the other modes are not.  相似文献   

13.
In the frame of the radiationless transitions modified theory, the analytical expression of a rate constant of the chemical reaction with an atom tunneling is found for the case of a continuous spectrum of a phonon subsystem. Two mechanisms of temperature dependence of a rate constant are taken into account, the oscillations of the potential barrier of the reaction at the intermolecular vibrations and media reorganization. The simple expressions for temperature and pressure dependencies of a rate constant are obtained in the special case of lattice motion-the Debye model. The well-known Marcus expression for the rate constant of an electron transfer in the Debye phonon spectrum is deduced first. The pressure dependence of the reorganization energy of the media is derived. Comparison of the theoretical results with the literature experimental data on H-atom tunneling in the fluorene-acridine crystal, taking into account four promotive modes (translational, librational, and two low-frequency intramolecular modes at 95 and 238 cm(-1)) and the frequency dependence of the Grueneisen parameter, is fulfilled. Good agreement of the theory and experiments is observed.  相似文献   

14.
We investigated thermo-mechanical properties of thoria up to a very high temperature (3300 K). We demonstrate that, using first-principles molecular dynamics, it is possible to predict thermal expansion of thoria in agreement with experiment. The new generalized gradient approximation functional within the density functional theory predicts, in agreement with experiment, not only the relative thermal expansion but also the absolute values of the lattice constant as a function of temperature. The molecular dynamics approach has an advantage over the previously used quasi-harmonic method, because it can be used even at temperatures (above 2700 K) where the longitudinal optical mode breaks in thoria. The calculated phonon dispersion agrees well with the experimental relation, measured using inelastic neutron scattering. The temperature, at which the negative frequency in the optical mode appears, coincides with the λ-type pre-melting transition reported in thoria.  相似文献   

15.
As model compounds for nanosize carbon clusters, the phonon dispersion curves of polyacene are constructed based on density functional theory calculations for [n]oligoacenes (n=2-5, 10, and 15). Complete vibrational assignments are given for the observed Fourier-transform infrared and Raman spectra of [n]oligoacenes (n=2-5). Raman intensity distributions by the 1064-nm excitation are well reproduced by the polarizability-approximation calculations for naphthalene and anthracene, whereas several bands of naphthacene and pentacene at 1700-1100 cm(-1) are calculated to be enhanced by the resonance Raman effect. It is found from vibronic calculations that the coupled a(g) modes between the Kekulé deformation and joint CC stretching give rise to the Raman enhancements of the Franck-Condon type, and that the b(3g) mode corresponding to the graphite G mode is enhanced by vibronic coupling between the (1)L(a)((1)B(1u)) and (1)B(b)((1)B(2u)) states. The phonon dispersion curves of polyacene provide a uniform foundation for understanding molecular vibrations of the oligoacenes in terms of the phase difference. The mode correlated with the defect-sensitive D mode of the bulk carbon networks is also found for the present one-dimensional system.  相似文献   

16.
The temperature dependence of the Debye temperature θD(T) was applied to analyze the lattice thermal conductivity of Si between 2 and 300 K. The analysis of experimental data in terms of the Dubey model of the two modes of conduction has been carried out by combining the relaxation time for phonon-phonon scattering, point defect scattering and boundary scattering. The relative importance of the contribution of each mode was examined by estimating their percentage contribution to the phonon conductivity. Agreement between theory and experiment is achieved over the whole temperature range of study. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
Coherent exciton-phonon coupling in CdSe/ZnS nanocrystals have been investigated by temperature-dependent two-dimensional electronic spectroscopy (2DES) measurements. Benefiting from the ability of 2DES to dissect assembles in nanocrystal films, we have clearly identified experimental evidences of coherent coupling between exciton and phonon in CdSe/ZnS nanocrystals. In time domain, 2DES signals of excitonic transitions beat at a frequency resonant to a longitudinal optical phonon mode; in energy domain, phonon side bands are distinct at both Stokes and anti-Stokes sides. When temperature increases, phonon-induced exciton dephasing is observed with dramatic broadening of homogeneous linewidth. The results suggest exciton-phonon coupling is essential in elucidating the quantum dynamics of excitonic transitions in semiconductor nanocrystals.  相似文献   

18.
研究了单根(7,5)蛇形单壁碳纳米管的拉曼光谱特征,观察到了环呼吸振动峰(RBM)、环呼吸振动的倍频峰(2RBM)、介于中间频率的振动峰(IMF)、无规振动峰(D)、剪切振动峰(G)、中间频率振动峰(M)、剪切振动和环呼吸振动的和频峰(G+RBM)、面内横向光学声子和纵向声学声子的和频峰(iTOLA)、无规振动的二次共振峰(G′或者2D)以及其它一些归属不清楚的拉曼峰.不同激发波长和不同激发偏振拉曼光谱研究表明,这些拉曼光谱峰显示出了非常强的激发能量和激发偏振的选择性.  相似文献   

19.
We used density functional theory (DFT) to study the structural, elastic, electronic, and lattice dynamical properties of tetragonal BiCoO3 applying the “norm-conserving” pseudopotentials within the local spin density approximation (LSDA). The calculated equilibrium lattice parameters and atomic displacements are in agreement with the available experimental and theoretical results. Moreover, the structural stability of tetragonal BiCoO3 were confirmed by the calculated elastic constants. In addition, the elastic properties of polycrystalline aggregates including bulk, shear and Young's moduli, and Poisson's ratio are also determined. The electronic band structure, total and partial density of states (DOS and PDOS) with ferromagnetic spin configuration are obtained. The results show that tetragonal BiCoO3 has an indirect band gap with both up- and down-spin configurations and its bonding behavior is of covalent nature. We compute Born effective charge (BEC) which is found to be quite anisotropic of Bi, Co and O atoms. The infrared and Raman active phonon mode frequencies at the Г point are found. The phonon dispersion curves exhibit imaginary frequencies which lead from the high-symmetry tetragonal phase to low-symmetry rhombohedral phase in BiCoO3. The six independent elastic constants, including bulk, shear and Young's moduli, and Poisson's ratio, complete BEC tensor and phonon dispersion relations in tetragonal BiCoO3 are predicted for the first time. Results of the calculations are compared with the existing experimental and theoretical data.  相似文献   

20.
The homogeneous width and frequency of S1 ← S0 0-0 transitions of free-base porphin in site B of n-decane are studied by photochemical hole-burning (T = 1.2–4.2 K). A localized phonon mode of 7 cm?1 is identified as a phonon sideband and holes burnt into it yield a lifetime of 115 ± 20 ps. The results are consistent with the exchange model for slow exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号