首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Nucleobase-anion glycosylation (KOH, tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1), MeCN) of the pyrrolo[2,3-d]pyrimidines 4a – d with 5-O-[(1,1-dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribo-furanosyl chloride ( 5 ) gave the protected β-D -nucleosides 6a – d stereoselectively (Scheme 1). Contrary, the β-D -halogenose 8 yielded the corresponding α-D -nucleosides ( 9a and 9b ) apart from minor amounts of the β-D -anomers. The deprotected nucleosides 10a and 11a were converted into 4-substituted 2-aminopyrrolo[2,3-d]-pyrimidine β-D -ribofuranosides 1 . 10c , 12 , 14 , and 16 and into their α-D -anomers, respectively (Scheme 2). From the reaction of 4b with 5 , the glycosylation product 7 was isolated, containing two nucleobase moieties.  相似文献   

2.
The 5,10-dihydro-4H-furo[3,2-e]pyrrolo[1,2-α][1,4]diazepin-5-one ( 7 ) and furo[3,2-e]pyrrolo[1,2-α][1,4]diaze-pine ( 10 ) are synthesized from suitable isocyanates 3a,b in acetic acid. The reactivity of 10 (C- and N-alkyla-tion) is investigated.  相似文献   

3.
Abstract

The study of the chemical behavior of some benz[b] indeno[1,2-e] [1,4] thiazine derivatives was accomplished. Different reactivities were observed for 4b,5-dihydrobenz[b]-indeno[1,2-e] [1,4] thiazine-10α(11H)-ol (3) and 5-ethyl-4b,5-dihydrobenz[b] indeno[1,2-e]-[1,4] thiazine-10α(11H)-ol (5); 3 is reoxidated to benz[b] indeno[1,2-e] [1,4] thiazine-10α(11H)-ol (2), while 5 undergoes transposition and oxidation to spiro[3-ethylbenzo-thiazol-2(3H), 1′-indan-2′-one] (6). Possible pathways for these transformations are discussed.  相似文献   

4.
Optically Active 3-Amino-2H-azirines as Synthons for Enantiomerically Pure αα-Disubstituted α-Amino Acids: Synthesis of the α-Methylphenylalanine Synthons and Some Model Peptides The synthesis of a novel 2-benzyl-2-methyl-3-amino-2H-azirine derivative with a chiral amino group is described. Chromatographic separation of the diastereoisomer mixture yielded the pure diastereoisomers 9a and 9b (Scheme 4) which are the D - and L -2-methylphenylalanine ((α-Me)Phe) synthons, respectively. The reaction of 9a and 9b with thiobenzoic acid and with Z-leucine yielded the monothiodiamides 10a and 10b (Scheme 5) and the dipeptide derivatives 11a and 11b (Scheme 6), respectively. Methanolysis of 11b yielded 12b . The absolute configuration of 10a was established by X-ray crystallography. The absolute configuration of (α-Me)Phe in 12b has been deduced from the known configuration of L -leucine.  相似文献   

5.
Hydrogenation of 4,7-dimethylcoumarin ( 1 ) in alkaline medium has been shown to furnish a mixture of (±)-trans-4aβ(H),8aα(H)-octahydro-4α,7β-dimethyl-2H-1-benzopyran-2-one ( 2 ), (±)-trans-4aβ(H),8aα(H)-octahydro-4α,7α-dimethyl-2H-1-benzopyran-2-one ( 3 ) and (±)-cis-4aα(H),8aα(H)-octahydro-4α,7α-dimethyl-2H-1-benzopyran-2-one ( 4 ) in 40:25:35:ratio, respectively. The stereochemistry of the major hydrogenation product 2 , has been established by transforming it to p-menthane derivatives e.g. (±)-2 (R)-[2′(R)hydroxy-4′(R) methylcyclohex-(1′S)-yl]propan-1-ol ( 20 ) and (±)-trans-3α,6β-dimethyl-3aβ(H),7aα(H)-octahydrobenzofuran ( 12 ). Starting from a mixture of lactones 2, 3 and 4 , lactone 3 has been obtained in pure state employing a sequence of reactions.  相似文献   

6.
Solid-liquid phase-transfer glycosylation (KOH, tris[2-(2-methoxyethoxy)ethye]amine ( = TDA-1), MeCN) of pyrrolo[2,3-d]pyrimidines such as 3a and 3b with an equimolar amount of 5-O-[(1,1 -dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribofuranosyl chloride (1) [6] gave the protected β-D -nucleosides 4a and 4b , respectively, stereoselectively (Scheme). The β-D -anomer 2 [6] yielded the corresponding α-D -nucleosides 5a and 5b with traces of the β-D -compounds. The 6-substituted 7-deazapurine nucleosides 6a , 7a , and 8 were converted into tubercidin (10) or its α-D -anomer (11) . Spin-lattice relaxation measurements of anomeric ribonucleosides revealed that T1 values of H? C(8) in the α-D -series are significantly increased compared to H? C(8) in the β-D -series while the opposite is true for T1 of H? C(1′). 15N-NMR data of 6-substituted 7-deazapurine D -ribofuranosides were assigned and compared with those of 2′-deoxy compounds. Furthermore, it was shown that 7-deaza-2′deoxyadenosine ( = 2′-deoxytubercidin; 12 ) is protonated at N(1), whereas the protonation site of 7-deaza-2′-deoxyguanosine ( 20 ) is N(3).  相似文献   

7.
The diastereoisomeric (+)-[1,8-14C]-(1'R,6R, S)-α-bisabolol ( 2a ) and (?)-[1,8-14C]-(1′S, 6R, S)-α-bisabolol ( 2b ) were synthesized by reaction of the Grignard compound of [1,6-14C]-5-bromo-2-methyl-2-pentene ( 12 ) with (+)-(R)- and (?)-(S)-4-acetyl-1-methyl-1-cyclohexene, ( 6a ) and ( 6b ) respectively. For the preparation of compound 12, cyclopropyl methyl ketone was treated with [14C]-methyl magnesium iodide to form the carbinol 11, which was cleaved by HBr. Compounds 6a and 6b were synthesized from (+)-(R)- and (?)-(S)-limonene, ( 4a ) and ( 4b ), via the derivatives 5a , 6a and 5b , 6b respectively. - This synthesis established the absolute configuration at C(1′) of the natural α-bisabolols: (R) for (+)-α-bisabolol and (S) for (?)-α-bisabolol. - Feeding experiments with cultures of Myrothecium roridum and radioactive (+)-(1′R, 6R, S)- and (?)-(1′S, 6R, S)-α-bisabolol ( 2a ) and ( 2b ) gave negative results. These findings indicate that bisabolane derivatives are not intermediates in the biosynthesis of verrucarol (3).  相似文献   

8.
The spiro[cyclohexane-1,2′-[2H]indene] derivatives 15a , b with molecular dimensions and nucleophilic functional groups similar to known steroid 5α-reductase inhibitors (e.g. 2 ) were synthesized. The spiro[cyclohexane-1,2′-[2H]indene]-1′(3′H),4-dione ( 5 ) was synthesized from 5-methoxyindan-l-one ( = 2,3-dihydro-5-methoxy-1H-inden-1-one). A Grignard reaction and a dehydration step led to the cyclohexene (±)- 7 which, upon a stereoselective hydrogenation catalyzed by Raney-Ni under mild conditions, gave 8a as a pure epimer. Further hydrogenation and hydrogenolysis of 8a over Pd/C at room temperature reduced the keto group to give pure 9a . Finally, the 5′-substituted derivatives 12a , 14a , and 15a were generated by deprotection and Heck-type reaction.  相似文献   

9.
The reaction of the quinoxaline 1 with 4-ethoxycarbonyl-1H-pyrazole-5-diazonium chloride 7 at room temperature gave 3-[α-(4-ethoxycarbonyl-1H-pyrazol-5-ylhydrazono)methoxycarbonylmethyl]-2-oxo-1,2-dihydroquinoxaline 8. The pmr spectrum of 8 in deuteriodimethylsulfoxide supported the presence of two tautomers 8-I and 8-II. Refluxing of 8 in N,N-dimethylformamide or acetic acid resulted in cyclization to afford 8-ethoxycarbonyl-4-oxo-3-(3-oxo-3,4-dihydroquinoxalin-2-yl)-1,4-dihydropyrazolo[5,1-c][1,2,4]triazine 9. Compound 9 was also obtained directly by the reaction of 1 with 7 under reflux in better yield. The reaction of 9 with hydrazine hydrate provided the hydrazinium salt 10 , while the reactions of 9 with triethyl and trimethyl orthoformates in the presence of 1,8-diazabicyclo[5,4,0]-7-undecene produced 8-ethoxycarbonyl-4-ethoxyl-3-(3-oxo-3,4-dihydroquinoxalin-2-yl)pyrazolo[5,1-c][1,2,4]triazine 11a and 8-ethoxycarbonyl-4-methoxyl-3-(3-oxo-3,4-dihydroquinoxalin-2-yl)pyrazolo[5,1-c][1,2,4]triazine 11b , respectively. The chlorination of 11a with phosphoryl chloride gave 3-(3-chloroquinoxalin-2-yl)-8-ethoxycarbonyl-4-ethoxylpyrazolo[5,1-c]-[1,2,4]triazine 12 , whose reaction with morpholine afforded 8-ethoxycarbonyl-4-ethoxyl-3-[3-(morpholin-4-yl)-quinoxalin-2-yl]pyrazolo[5,1-c][1,2,4]triazine 13.  相似文献   

10.
Ribosylation of 3-amino-5H-[1,2,4]triazolo[4,3-b][1,2,4]triazole ( 1 ) with l-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose and stannic chloride resulted in the following protected nucleoside analogs: 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 4 ), 3-amino-1-(2,3,5-tri-O-benzoyl-α-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 5 ), 3-amino-1-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl)[1,2,4]triazolo[4,3-β][1,2,4]triazole ( 5 ), and 3-(2,3,5-tri-O-benzoyl-β-D-ribofuranosyl) amino-5H-[1,2,4]triazolo[4,3-b]-[1,2,4]triazole ( 7 ). Compounds 4–6 were deprotected to 3-amino-1-β-D-ribofuranosyl[1,2,4]triazolo[4,3-b][1,2,4]-triazole ( 3 ), 3-amino-1-α-D-ribofuranosyl[1,2,4]triazolo[4,5-b][1,2,4]triazole ( 8 ), and 3-imino-2H-2-β-D-ribo-furanosyl[1,2,4]triazolo[4,3-b][1,2,4]triazole ( 9 ), while 7 could not be deprotected without decomposition. Compounds 1, 4, 6, 7 , and 9 were screened and found to have no antiviral activity.  相似文献   

11.
2-[2-(Alkylimino)-2-phenylethylidene]pyrrolidines (vinamidines, 3 – 6 ) were obtained either via activation of the corresponding vinologous amide 1 with Meerwein salt and subsequent treatment of the intermediate 2 with an amine, or more directly by acid-catalyzed condensation of the Schiff bases derived from acetophenone with 2-ethoxy-1-pyrroline. Nitrosation of these vinamidines led to α,α′-diimino-oximes. In two cases ( 10 , 11 ), these oximes underwent acid-catalyzed rearrangement with formation of a 5,6,7,8-tetrahydroimidazo[1,2-a]pyridine ring system ( 12 , 13 ). X-Ray analysis of one of these products ( 13 ) and also of one of the vinamidine salts ( 6 ) are presented.  相似文献   

12.
Digitoxigenin ( 3 ) was transformed by a Fusarium spec. to 7β-hydroxydigitoxigenin ( 1 ) 1β, 7β-dihydroxydigitoxigenin ( 4 ) and to the hitherto unknown 7β, 11α-dihydroxydigitoxigenin ( 9 ). 7β-acetoxy-digitoxigenin ( 2 ) was degraded to methyl 3β, 7β-diacetoxy-14-hydroxy-5β, 14β, 17αH-etianate ( 11 ).  相似文献   

13.
3-Phenylpyrazole-5-diazonium chloride (5) couples with benzenesulfonylacetone (9a) , benzenesulfonylacetophenone (9b) , ethyl benzenesulfonylacetate 9c , and ethyl benzoylacetate (12b) in ethanol in the presence of sodium acetate at room temperature to afford the pyrazolo[3,2-c]-1,2,4-triazine derivatives 11a and 11b and the acyclic hydrazones 10c and 13 respectively. The products 11a,b and 10c can also be obtained from the reaction of the corresponding hydrazidoyl halides 8a-c with sodium benzenesulfinate in high yield. The hydrazones 10c and 13 can be cyclised thermally or under the influence of acid into pyrazolo[3,2-c]-1,2,4-triazine derivatives 11c and 14 respectively.  相似文献   

14.
The failure to obtain the N-(13)alkylrutaecarpines ( 1d,e,f ) by heating rutaecarpine ( 1a ) with neat alkyl halides at 120° is discussed in comparison with the facile reaction with methyl iodide. In contrast, with alkyl halide-potassium carbonate in acetone, the corresponding N-(13)alkyl-rutaeearpines ( 1d-l ) are obtained in good yield. By use of 1,3-diiodopropane and 1,2-dibromo-ethane, this reaction provides a facile route to 12a and 13 which are derivatives of the heretofore unknown indolo[1,2′:3,4]pyrazo[1,2-α]quinazoline and indolo[1,2 :3,4][1,4]diazepino[1,2-α]quinazoline ring systems.  相似文献   

15.
The UV. irradiation of 17β-acetoxy-4α, 5α-epoxy-2-oxaandrostan-3-one ( 7 ) yields 17β-acetoxy-2-oxa-10(5 → 4)abeo-4ζ (H)-androsta-3,5-dione ( 11 ). A non-photochemical synthesis of 11 , proceeding in lower yield, is also described.  相似文献   

16.
3-Phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4- b ][1,3,4]thiadiazepine-6,8-dione ( 1 ) was condensed with o -aminothiophenol, 2-amino-ethanol or cystamine to afford compounds 2-4 respectively. Treatment of compound 1 with dimethylthiomethylenemalononitrile yielded the corresponding pyrano[3,2- f ][1,2,4]triazolo[3,4- b ]-[1,3,4]thiadiazepine derivative 5 . 7-[5-Amino-1,3-dithiolan-2-ylidene]-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4- b ][1,3,4]thiadiazepine-6,8-dione ( 6 ) was obtained by treating compound 1 with CS 2 and chloroacetonitrile. Thiation of compound 1 gave the corresponding thioanalog 7 , which in turn was condensed with malononitrile to give 3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4- b ][1,3,4]thiadiazepine-6-one-8-ylidenemalononitrile ( 8 ). On treating compound 8 with benzaldehyde or p -nitrobenzaldehyde, pyrano[1,2,4]triazolo[1,3,4]thiadiazepin derivatives 9a , b , respectively, were obtained. Compound 8 was treated with CS 2 and methyl iodid to give the corresponding dithiomethylmethylene derivative 10 which was subjected to react with aniline to give pyrido[1,2,4]triazolo[1,3,4]thiadiazepine derivative 11 . Compound 8 was treated with 3-aminopyridine, o -aminothiophenol, or o -phenylenediamene to yield compounds 12 and 13a , b respectively. Finally, tertiary amines or activated phenols were condensed with compound 8 to yield compounds 14 and 15a , b respectively.  相似文献   

17.
1,3,4,14b-Tetrahydro-2H,10H-pyrazino[1,2-α]pyrrolo[2,1-c] [1,4]benzodiazepines (1a-e) were synthesized to investigate their potential CNS activity. The key step in the synthesis was the formation of the 10,11-dihydro-5H-pyrrolo[2,1-c][1,4]benzodiazepine (13) by reduction and concomitant cyclization of the nitroketone (11). Biological evaluation of 1a-e revealed interesting properties for 1b (CGS 7525A) [2].  相似文献   

18.
The reactions of the pyrazole-5-diazonium salt 3 with malononitrile and ethyl cyanoacetate gave 4-amino-3-cyano-8-ethoxycarbonylpyrazolo[5,1-c][1,2,4]triazine 7 and 4-amino-3,8-bisethoxycarbonylpyrazolo[5,1-c]-[1,2,4]triazine 8 , whose reactions with p-chloroaniline hydrochloride afforded 4-amino-8-ethoxycarbonyl-3-(p-chlorophenyl)amidinopyrazolo[5,1-c][1,2,4]triazine 9 and 4-amino-8-ethoxycarbonyl-3-(p-chlorophenyl)car-bamoylpyrazolo[5,1-c][1,2,4]triazine 10 , respectively. The reactions of 7 and 8 with o-phenylenediamine di-hydrochloride provided 9-ethoxycarbonyl-13H-spiro[benzimidazole-2′(3′H),6(5H)-pyrazolo[1,5′:3,4][1,2,4]tri-azino[5,6-b][1,5]benzodiazepine] hydrochloride 11a and 9-ethoxycarbonyl-6-oxo-13H-5,6-dihydropyrazolo-[1′,5′:3,4][1,2,4]triazino[5,6-b][1,5]benzodiazepine 12 , respectively. The antifungal activity of the above compounds was described.  相似文献   

19.
Catalytic reductive scission of phthalazine (II) utilizing a two-stage palladium-Raney nickel procedure afforded o-xylene-α,α′-diamine (III) in 97% yield. Treatment of III with carbon disulfide gave [o-(aminomethyl)benzyl]dithiocarbamic acid (IV), which upon thermal cyclization furnished 1,2,4,5-tetrahydro-3H-2,4-benzodiazepine-3-thione (V). Reaction of V with 1,2-dibromoethane, chloro-2-propanone, ethyl 2-chloroacetoacetate, ethyl chloroacetate, and ethyl 2-bromohexanoate gave 2,3,5,10-tetrahydrothiazolo[3,2-b][2,4]benzodiazepine (VII) and substituted 5,10-dihydrothiazolo[3,2-b][2,4]benzodiazepines (Villa and b, IX, and X), respectively. Condensation of V with 2-chlorocyclohexanone and 3-bromothiochroman-4-one afforded 1,2,3,4,7,12-hexahydrobenzothiazolo[3,2-b][2,4]benzodiazepine (XII) and 9,14-dihydro-6H-[1]benzothiopyrano[4′,3′:4,5]thiazolo[3,2-b][2,4]benzodiazepine(XIll). None of the compounds possessed appreciable biological activity.  相似文献   

20.
Ready, convenient synthesis for 8-cyano-7-ethoxy-4-oxo-9-phenyl-2-substituted-1,2,3,-4-tetrahydropyrido-[3′,2′:,4,5]thieno[3,2-d]pyrimidines 5 , 8-cyano-7-ethoxy-4-oxo-9-phenyl-2-substituted-3,4-dihydropyrido[3′,2-: 4,5]thieno[3,2-d]pyrimidines 6 , 4-chloro-8-cyano-7-ethoxy-9-phenyl-2-substitutedpyrido[3′,2′:4,5]thieno[3,2-4 -pyrimidines 7 and 8-cyano-7-ethoxy-2-(2′-nitrophenyl)-9-phenyl-4-substitutedpyrido[3′,2′:4,5]thieno[3,2- d ]pyrimidines 8-18 from 2-chloro-3,5-dicyano-6-ethoxy-4-phenylpyridine 1 via 3,5-dicyano-6-ethoxy-2-mercapto-4-phenylpyridine 2 and aminocarboxamide 4 are reported. In addition, the reaction of hydrazino derivative 12 with reagents such as formic acid and triethyl orthoformate yielded the fused tetraheterocyclic 8-cyano-9- ethoxy-5-(2′-nitrophenyl)- 7-phenylpyrido[3′,2′:4,5]thieno[2,3-e]-1, 2,4-triazolo[4,3-c]pyrimidine system 19 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号