首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel thermosensitive poly(N-vinylisobutyramide)(polyNVIBA) hydrogel was prepared by the copolymerization of N-vinylisobutyramide (NVIBA) with butylene-bis-NVA(B-BNVA) as a crosslinker in a high yield. The swelling transition behavior was examined in comparison with poly(N-isopropylacrylamide)(polyNIPAAm) hydrogel. The resulting polyNVIBA hydrogel clearly showed a swelling transion in water at ca. 41°C. To control the transition temperature (Tt) of the gel, crosslinked copolymers of NVIBA and N-vinylacetamide (NVA) were prepared and compared with copolymers of N-isopropylacrylamide(NIPAAm) and NVA. The incorporation of NVA led to a higher swelling transition temperature. Tt of poly(NVIBA-co-NVA) gels was almost the same as those in water-soluble poly(NVIBA-co-NVA). The responses for a swelling transition of polyNVIBA and poly(NVIBA-co-NVA) gels were sharp in comparison to polyNIPAAm gels. PolyNVIBA and poly(NVIBA-co-NVA) gels desorbed 98% of water above Tt. The characteristic and the mechanism of the phase transition on the hydrogels were discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3377–3384, 1997  相似文献   

2.
Homopolymerization of vinylformamide and N-methyl-N-vinylacetamide in water in the presence of 2,2′-azobis(2-methylpropanediamine) dihydrochloride and of the hydrogen peroxide-ammonium hydroxide system was examined. Hydrolysis of polyvinylformamide, poly-N-methyl-N-vinylacetamide, and poly-N-vinylacetamide with hydrochloric acid at 100°C was studied.  相似文献   

3.
Pyrolysis of (N-α-isopropoxyethyl)isobutyramide, which was obtained by the reaction of isobutyramide, 2-propanol, and acetaldehyde in the presence of conc. sulfuric acid, produced N-vinylisobutyramide (NVIBA). The free radical polymerization of NVIBA was carried out in various solvents in the presence of a radical initiator. It was found that the polymerizability of NVIBA is similar to that of N-vinylacetamide. The resulting polyNVIBA showed a lower critical solution temperature (LCST) sharply at 39°C. Thermosensitive properties of polyNVIBA were investigated in comparison with poly(N-isopropylacrylamide). © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1763–1768, 1997  相似文献   

4.
A series of novel hydrogels based on poly(N-isopropylacrylamide) (PNIPAAm) with pendant poly(N-(2-(dimethylamino) ethyl)-methacrylamide) (PDMAEMA) grafts were designed and synthesized. The influence of the pendant PDMAEMA grafts on the properties of the resulted hydrogels was examined in terms of morphology observed by scanning electron microscopy (SEM), thermal property characterized by differential scanning calorimetry (DSC) and shrinking/swelling kinetics upon external temperature changes. In comparison with the conventional PNIPAAm hydrogels, resulting hydrogels presented favorable pH sensitivity as well as improved thermosensitive properties, including enlarged water containing capability at room temperature and faster shrinking/swelling rate upon heating. In addition, fish DNA, used as a model drug, was loaded into the hydrogels, and the controlled release behavior of the drug-loaded hydrogels at different temperatures (22 and 37 °C) was further studied.  相似文献   

5.
HRM (hydrophilic reactive microgels) hydrogels based on acrylamide and 2-acrylamido-2-methylpropane sulfonic acid were prepared using HRM as a new crosslinking agent. HRM containing double bonds (C=C) were obtained by chemically modifying hydrophilic microgels (HM) of acrylamide with 2-acrylamido-2-methylpropane sulfonic acid. The resulting HRM hydrogels had high compression strength, elasticity, and elongation under high water content. The excellent mechanical performance is a main result of the unique microstructure of the hydrogels that are crosslinked by HRM instead of the conventional crosslinking agents such as N,N′–methylenebisacrylamide.  相似文献   

6.
Multilayer hydrogels were prepared by frontal photopolymerization of acrylamide and 2-acrylamido-2-methylpropane sulfonic acid using hydrophilic reactive microgels (HRM) as crosslinkers instead of conventional crosslinkers. The hydrophilic microgels (HM) were prepared by inverse emulsion photopolymerization and then were chemical modified by N-methylolacrylamide (NMA) to obtain HRM with CC double bonds. The HM and HRM was characterized by dynamic light scattering measurements, SEM, TEM and FTIR, respectively. It was found that the resulting multilayer hydrogels showed high fracture strength and high tensile elongation along parallel direction. However their fracture strength and tensile elongation along perpendicular direction was very weak. The swollen multilayer hydrogels were about 1.0–2.0 mm in thickness, the maximal equilibrium swelling degree was only 30.45. The multilayer hydrogels were characterized by DSC, TEM and XRD, respectively. The swelling property and mechanical strength of some typical multilayer hydrogels were studied.  相似文献   

7.
N-vinyl-n-butyramide (NVBA), N-vinylisovaleramide (NVIVA), and N-vinyl-n-valeramide (NVVA), which are N-vinylalkylamides with different alkyl groups were synthesized and their solution behavior in a polymeric form was examined. Copolymers of N-vinylisobutyramide (NVIBA) with N-vinylacetamide (NVA), NVIBA with NVVA, and NVVA with NVA were prepared by the solution polymerization to control the LCSTs. The resultant polyNVBA showed a lower critical solution temperature (LCST) sharply at 32°C, but polyN-vinylisovaleramide (polyNVIVA) and polyN-vinyl-n-valeramide(polyNVVA) that have n-butyl and isobutyl groups, respectively, on their side chains were insoluble even in cold water. The water solubility of the resulting polymers was found to vary, depending on the molecular shapes as well as the side chain length of the alkyl groups in question. The copolymers consisting of NVVA, NVIBA, and NVA in water showed LCSTs sharply between 10 and 90°C, depending on changes in their comonomer content. It was found that the changes in LCST that are caused by the incorporation of comonomers are due to changes in the overall hydrophilicity of the polymer. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3087–3094, 1997  相似文献   

8.
Monoquaternary cationic polymerizable surfactants of type N‐acryloyl‐N′‐methyl‐N′‐alkyl piperazinium bromide based on piperazine heterocycle was synthesized by reacting N‐acryloyl‐N′methyl piperazine with the corresponding n‐alkyl bromide (decyl, dodecyl, tetradecyl, and hexadecyl) in anhydrous acetone at room temperature. The resulting surfactants were deliquescent to display any sharp melting points. The surface activity was studied by surface tension measurements. Due to the complex head group geometry of these surfactants, the critical micelle concentration value was high in comparison to the analogous alkyltrimethyl ammonium bromides of similar alkyl chain length. The surfactants were polymerized by micellar (in water) and isotropic (in benzene) conditions and the resulting polymers were characterized by solubility and viscosity studies. The polymers prepared in water showed higher viscosity than the ones prepared in benzene as a result of micellar aggregation in water. The reduced viscosity of the polymers in polar solvents such as methanol and dimethyl formamide (DMF) showed polyelectrolyte‐like behavior, whereas nonelectrolyte behavior was observed in chloroform. pH‐responsive hydrogels were prepared by polymerizing the surfactants in the bicontinuous phase of a microemulsion. The resulting polymers did not exhibit any definite micro/nanostructure due to cross‐polymerization of the hydrophilic oil in the bicontinuous network structure. The gels were highly responsive to changes in pH of the medium and showed high‐swelling degree in acidic media owing to the protonation of the tertiary nitrogen of the piperazine ring. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2059–2072, 2009  相似文献   

9.
Dual thermo‐ and pH‐sensitive network‐grafted hydrogels made of poly(N,N‐dimethylaminoethyl methacrylate) (PDMAEMA) network and poly(N‐isopropylacrylamide) (PNIPAM) grafting chains were successfully synthesized by the combination of atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer (RAFT) polymerization, and click chemistry. PNIPAM having two azide groups at one chain end [PNIPAM‐(N3)2] was prepared with an azide‐capped ATRP initiator of N,N‐di(β‐azidoethyl) 2‐chloropropionylamide. Alkyne‐pending poly(N,N‐dimethylaminoethyl methacrylate‐co‐propargyl acrylate) [P(DMAEMA‐co‐ProA)] was obtained through RAFT copolymerization using dibenzyltrithiocarbonate as chain transfer agent. The subsequent click reaction led to the formation of the network‐grafted hydrogels. The influences of the chemical composition of P(DMAEMA‐co‐ProA) on the properties of the hydrogels were investigated in terms of morphology and swelling/deswelling kinetics. The dual stimulus‐sensitive hydrogels exhibited fast response, high swelling ratio, and reproducible swelling/deswelling cycles under different temperatures and pH values. The uptake and release of ceftriaxone sodium by these hydrogels showed both thermal and pH dependence, suggesting the feasibility of these hydrogels as thermo‐ and pH‐dependent drug release devices. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Adhesives/sealants are used after suturing to prevent leakage of cerebrospinal fluid from an anastomotic site. Commercial adhesives/sealants have been used to close the cerebral dura. However, swelling of the cured adhesives/sealants induces increased intracranial pressure and decreases the strength of the seal. In the present study, tissue adhesive hydrogels with improved swelling property using inclusion complex composed of α-cyclodextrin (αCD) and decyl group (C10)-modified Alaska pollock-derived gelatin (C10-ApGltn) with a high degree of substitution (DS) (>20 mol%) are developed. Viscosity of C10-ApGltn with a high DS solution remarkably decreased by the addition of αCD. The resulting αCD/C10-ApGltn adhesive hydrogel composed of αCD/C10-ApGltn inclusion complexes and poly(ethylene glycol) (PEG)-based crosslinker showed improved swelling property after immersion in saline. Also, the resulting adhesive has a significantly higher burst strength than fibrin-based adhesives and is as strong as a PEG-based adhesive. Quantitative analysis of αCD revealed that the improved swelling property of the resulting adhesive hydrogels is induced by the release of αCD from cured adhesive, and the subsequent assembly of decyl groups in the saline. These results suggest that adhesives developed using the αCD/C10-ApGltn inclusion complex can be useful for closing the cerebral dura mater.  相似文献   

11.
We report the synthesis of N-isopropylacrylamide-based hydrogels containing either an anionic (acrylic acid) or cationic ([2-(acryloyloxy)ethyl]trimethylammonium chloride) co-monomer. These hydrogels were cross-linked with a cleaveable (N,N′-cystaminebisacrylamide) and/or inert (N,N-methylenebisacrylamide) molecule in four combinations. Gold nanostructures were then synthesized within these hydrogel matrices by in situ reduction of a metal ion precursor. The resulting eight nanocomposites and their non-gold-containing (native) analogs were characterized with several analytical methods. UV–visible and infrared spectroscopy revealed differences among the samples based largely on the concentration and identity of cross-linking agent. Equilibrium swelling masses and phase transition behavior point to differences among samples on charge of the hydrogel backbone, cross-linker type, and presence or absence of gold nanostructures. A molecular level explanation for these observations is described.  相似文献   

12.
A nanocomposite (NC) hydrogel crosslinked by inorganic Laponite XLG was successfully synthesized via in situ free radical polymerization of monomers N,N‐diethylacrylamide and (2‐dimethylamino) ethyl methacrylate (DMAEMA). Polymerization was carried out at room temperature due to the accelerating effect of DMAEMA. The as‐prepared hydrogels displayed controlled transformation in optical transmittance and volume in response to small diversification of environmental factors, such as temperature and pH. The compressive strength of swollen D6:1G6 hydrogels was as high as 2219 kPa while compressive strain was 95%. Cyclic compression measurement exhibited good elastic properties of NC hydrogels. This work provides a facile method for fabricating stimuli‐responsive hydrogels with superior mechanical property. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 876–884  相似文献   

13.
The development and optimization of processes involving polymeric molecules require determination and monitoring of key molecular characteristics of the polymer. Samples of poly-N-methyl-N-vinylacetamide were synthesized and fractionated. Partial hydrolysis of the homopolymer fractions was performed, and fractions of a random copolymer of N-methyl-N-vinylacetamide and N-methyl-N-vinylamine hydrochloride were obtained. The molecular weights and conformational parameters of the homo- and copolymers in 0.2 M aqueous NaCl were determined by methods of molecular hydrodynamics.  相似文献   

14.
Double network (DN) hydrogels as one kind of tough gels have attracted extensive attention for their potential applications in biomedical and load-bearing fields. Herein, we import more functions like shape memory into the conventional tough DN hydrogel system. We synthesize the PEG-PDAC/P(AAm-co-AAc) DN hydrogels, of which the first network is a well-defined PEG (polyethylene glycol) network loaded with PDAC (poly(acryloyloxyethyltrimethyl ammonium chloride)) strands, while the second network is formed by copolymerizing AAm (acrylamide) with AAc (acrylic acid) and cross-linker MBAA (N, N'-methylenebisacrylamide). The PEG-PDAC/P(AAm-co-AAc) DN gels exhibits high mechanical strength. The fracture stress and toughness of the DN gels reach up to 0.9 MPa and 3.8 MJ/m3, respectively. Compared with the conventional double network hydrogels with neutral polymers as the soft and ductile second network, the PEG-PDAC/P(AAm-coAAc) DN hydrogels use P(AAm-co-AAc), a weak polyelectrolyte, as the second network. The AAc units serve as the coordination points with Fe3+ ions and physically crosslink the second network, which realizes the shape memory property activated by the reducing ability of ascorbic acid. Our results indicate that the high mechanical strength and shape memory properties, probably the two most important characters related to the potential application of the hydrogels, can be introduced simultaneously into the DN hydrogels if the functional monomer has been integrated into the network of DN hydrogels smartly.  相似文献   

15.
Complexation between perrhenate ion and N-methyl-N-vinylacetamide and N-methyl-N-vinylamine copolymers in aqueous solutions was studied by high-performance liquid chromatography on monolith ultrashort columns. It was demonstrated that complexation has slow kinetics and strongly depends on the length of alkyl substituent.  相似文献   

16.
N‐Isopropylacrylamide/itaconic acid copolymeric hydrogels were prepared by irradiation of the ternary mixtures of N‐isopropylacrylamide/itaconic acid/water by γ‐rays at ambient temperature. The dependence of swelling properties and phase transitions on the comonomer concentration and temperature were investigated. The hydrogels showed both temperature and pH responses. The effect of comonomer concentration on the uptake and release behavior of the hydrogels was studied. Methylene blue (MB) was used as a model drug for the investigation of drug uptake and release behavior of the hydrogels. The release studies showed that the basic parameters affecting the drug release behavior of the hydrogels were pH and temperature of the solution. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

17.
Here we report a facile strategy of fabricating multifunctional polyacrylamide(PAM) hydrogels based on hybrid graphene oxide (GO) sheets and carbon nanotubes (CNTs). Compared to original PAM hydrogels cross-linked chemically with N,N-methylenebisacrylamide (BIS), the hybrid hydrogels exhibit high mechanical strength (strength > 90?kPa and broken strain > 2000%), well adhesion, environmental stability, dye-loading capacity, and excellent self-healing property. This study provides a new insight for the preparation of functionalized hydrogels with carbon nano-materials, and the resultant material shows very promising performance for a range of applications.  相似文献   

18.
Chiral, pH‐responsive hydrogels are constructed by poly(ethylene glycol) diacrylate/α‐cyclodextrin (PEGDA/α‐CD) inclusion complex and L‐N‐acryloyl‐alanine or D‐N‐acryloyl‐alanine (L‐NAA or D‐NAA) by an effective free radical polymerization approach. PEGDA containing two C=C end groups was used simultaneously to introduce α‐CD units in the resulting hydrogels and to serve as a cross‐linking agent, by which forming the designed hydrogels in quantitative yield. Hydrophilic α‐CD moieties acted as pore‐forming agent, while the L(D)‐NAA‐based polymer chains bearing –COOH groups enabled the hydrogels to display remarkable swelling–deswelling behavior in response to pH variation. The chiral NAA monomer‐derived polymer chains rendered the hydrogels with intriguing optical activity, according to circular dichroism spectra. Scanning electron microscopy revealed the uniformly porous microstructures of hydrogels. More remarkably, the L‐NAA‐based hydrogels preferentially adsorbed trans‐4‐hydroxy‐d ‐proline and preferentially released trans‐4‐hydroxy‐l ‐proline, while D‐NAA‐based hydrogels provided opposite results. The hydrogels also demonstrated remarkable enantioselective release ability towards chiral drug ibuprofen. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Poly((N-(Hydroxymethyl)methacrylamide)–1-allyl-2-thiourea) hydrogels, Poly(NHMMA–ATU), were synthesized by gamma radiation using 60Co γ source at different irradiation doses and different ATU content in the irradiated monomer mixture. The swellability of the synthesized hydrogels was changed by irradiation doses and by the content of ATU in the irradiated mixture. These hydrogels were used for the specific gold recovery and pre-concentration from single gold ion solutions and from different natural samples. It has been observed that gold adsorption capacity onto the hydrogels was high at low pHs and reached maximum value at pH = 0.5. Adsorption capacity of the hydrogels for gold at pH = 0.5 was found to be about 698 mg g− 1 dry hydrogels. Adsorption equilibrium time of gold ions onto the hydrogels was found to be very short and also these hydrogels were showed extremely high selectivity to the gold ions in acidic media when the concentration of the other metal ions were extremely higher than gold. Because of the high specificity of these hydrogels to gold beside the other metal ions at low pHs, all matrix effects were easily eliminated adsorbing gold onto the hydrogels and desorbing into 3 M HCl solution containing 0.8 M thiourea. These hydrogels were found to be highly open pore size. This property of the hydrogels make them attractive due to high adsorption capacity of gold ions on/in the hydrogels penetrating inside and react to all functional groups in the interior surface of the hydrogels.  相似文献   

20.
Dual responsive cyclotriphosphazene (CTP)‐based hydrogels have been synthesized for a controlled release of FU, a hydrophilic drugs. These hydrogels composed of mono (methacryloyl‐2‐ethoxy)‐pentakis(N1,N1‐dimethylpropane‐1,3‐diamino)‐cyclotriphosphazene (HEMA (DMPDA)5CP), acryl amide and pectin were synthesized by free radical polymerization method using methylenebisacrylamide cross linker. The CTP hydrogels were characterized to understand the structure, drug nature in the network and morphology by FTIR, DSC, XRD and SEM, respectively. In this paper, the swelling (dynamic and equilibrium) properties of cyclotriphosphazene hydrogels were investigated, showing dual (pH and thermo) responsiveness and large variation in the swelling capacity. Based on these results the structural parameters of the hydrogel networks such as the average molecular weight between cross‐links (Mc) and polymer–solvent interaction parameter (χ) were determined. The CTP hydrogels has high FU loading efficiency 65 ± 0.5. In‐vitro FU release of these hydrogels was controlled for about 24 hr also hydrogel showed a distinct initial burst. The CTP hydrogels are bearing both hydrophilic groups of pectin and hydrophobic groups of CTP exhibited dual responsive behaviors with pH and temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号