首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Polyacetylene, (CH)x, has been doped with trimethyloxonium hexachloroantimonate, (CH3)3O+SbCl(1), in dichloromethane and acetonitrile. The maximally doped (CH)x films have moderate conductivities [σRT(CH2Cl2) = 10, σRT(CH3CN) = 0.7 Ω?1 cm?1]. Reactions between 1 and (CH)x CH2Cl2 or CH3CN were followed in situ by 1H nuclear magnetic resonance spectroscopy and x-band electron spin resonance spectroscopy. It was found that the reactions in the two solvents are different. In dichloromethane the dopant is SbCl5, which forms from the decomposition of 1, and doping proceeds by electron removal from (CH)x chains. Based on the ESR signal loss, an estimate can be made of the diffusion rate of SbCl5, into the (CH)x fibrils in CH2Cl2; it is found to be ca. 10?17 cm2/s. In acetonitrile the dopant appears to be either CH3CNCH, H+, CH, or a combination of one or more of these dopants. It is postulated that the CH3CNCH, CH, and/or H+ dopant covalently binds to the (CH)x chain. X-ray photoelectron spectra show that films doped with excess 1 in both solvents have approximately one SbCl per 33 CH units.  相似文献   

2.
A simplified analysis is presented for the evaluation of the three‐electron one‐center integrals of the form ∫rrrrrred r 1d r 2d r 3, for the cases i, j, k, ≥−2, l=−2, m≥−1, n≥−1. These integrals arise in the calculation of lower bounds for energy levels and certain relativistic corrections to the energy when Hylleraas‐type basis sets are employed. Convergence accelerator techniques are employed to obtain a reasonable number of digits of precision, without excessive CPU requirements. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 93–99, 1999  相似文献   

3.
Binary chalcogenide As‐Se glasses and their thin films are important for optics, computers, materials science and technological applications. To increase understanding of the properties of thin films fabricated by plasma deposition techniques, more information concerning the physics of plasma plume is needed. In this study the formation of clusters in plasma plume from different As‐Se glasses by laser desorption ionization (LDI) or laser ablation (LA) was studied by time‐of‐flight mass spectrometry (TOF MS) in positive and negative ion modes. Formation of a number of AspSeq singly charged clusters As3Se (q = 1–5), AsSe (q = 1–3), As2Se (q = 2–4), and As3Se (q = 2–5) was found from As‐Se glasses with the molar ratio As:Se in the range from 1:2 to 7:3. The stoichiometry of the AspSeq clusters was determined via isotopic envelope analysis and computer modeling. The structure of the clusters is proposed and the relationship to the structure of the parent glasses, as also suggested by Raman scattering spectra, is discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

4.
The decomposition kinetics of chemically activated methyl-d1-methylsilane-d2 (DMS-d) and ethylsilane-d3 (ES-d) from the Si-D and C-H insertion reactions of CH2 (1A1) with methylsilane-d3 have been studied. The total rate constants for decomposition of chemically activated DMS-d3 and ES-d3 have been measured. The individual rate constants for molecular elimination of CH3D, CH2D2, and D2 from DMS-d and for molecular elimination of CH3CH2D and D2 from ES-d have been measured. All of the above rate constants exhibit the expected kinetic isotope effect when compared to those found previously in the undeuterated system. RRKM theory calculations of the rate constants for the expected C-Si and Si-D bond rupture processes, based on energetics and activated comple× models deduced previously for the undeuterated system, were carried out. In the case of DMS-d the RRKM theory calculations of rate constants for the bond rupture processes combined with experimental rate constants for the molecular elimination processes gave a total rate constant for decomposition in agreement with the measured value. The results of a high-pressure study of the CH3D/CH2D2 ratio from chemically activated DMS-d3 decomposition were consistent with complete randomization of internal energy up to a pressure of 4 atmospheres (lifetime of ~1.7 × 10×11 sec). This is not an unexpected result in light of earlier work.  相似文献   

5.
The thermolysis reactions of the tricyanomethyl compounds 10a-c were studied in solution. 2,2-Dicyano-3-methyl-3-phenylbutyronitrile ( 10a ) and 2,2-dicyano-3-methyl-3-(4-nitrophenyl)butyronitrile ( 10b ) decomposed heterolytically into carbenium ions and (CN)3C anions, while 9-methyl-9-(tricyanomethyl)fluorene ( 10c ) underwent about 11% homolytic C-C bond cleavage into 9-methyl-9-fluorenyl- and tricyanomethyl radicals. The rates of the homolysis were determined by a radical scavenger procedure under conditions of pseudozero order kinetics. From the temperature effect on the rate constants the activation parameters were determined [ΔH ( 10c ) = 155· 2 kJ mol−1, ΔS ( 10c ) = 58· 5 J mol−1 K−1]. Standard enthalpies of formation ΔH (g) were determined for 2,2-dicyanopropionitrile ( 2 ) (422.45 kJ mol−1), 2,2-dicyanohexanenitrile ( 3 ) (349.74 kJ mol−1), 2,2-dicyano-3-phenylpropionitrile ( 4 ) (540.75 kJ mol−1), 2-butyl-2-methylhexanentrile ( 5 ) (-133.20 kJ mol−1), 2,2-dimethylpentanenitrile ( 6 ) (-45.78 kJ mol−1), and 2-methylbutyronitrile ( 7 ) (2.44 kJ mol−1) from the enthalpies of combustion and enthalpies of sublimation/vaporization. From these data and known Δ (g) values for alkanenitriles and -dinitriles, thermochemical increments for ΔH (g) were derived for alkyl groups with one, two, or three cyano groups attached. The comparison of these increments with those of alkanes reveals a strong geminal destabilization, which is interpreted by dipolar repulsions between the cyano groups. - From ΔH (g) of 10c and ΔH of its homolytic decomposition the radical stabilization enthalpy for the tricyanomethyl radical 1 RSE ( 1 ) = -18 kJ mol−1 was determined. Thus, 1 is destabilized, in comparison with the RSEs of tertiary α-cyanalkyl (23 kJ mol−1) and α,α-dicyanoalkyl (27 kJ mol−1) radicals, which were recalculated from bond homolysis measurements[4] and the new thermochemical data. This change of RSE on increasing the number of α-cyano groups is discussed as the result of the additive contributions by resonance stabilization and increasing destabilization by dipolar repulsion. The amount of the dipolar energies was estimated by molecular mechanics (MM2).  相似文献   

6.
A polystyrene–polyisoprene (PS–PI) diblock copolymer (10,000–50,000 g/mol) and a matched PS&ndashPI–PS triblock (10,000–100,000–10,000 g/mol) were employed to study the effect of chain architecture on the rheological response of ordered block copolymer melts. Both samples adopt hexagonal microstructures with PS cylinders embedded in a PI matrix; on further heating, an order–order transition (OOT) into a cubic array of spheres takes place prior to the order–disorder transition. Each morphology was verified by SAXS and TEM. Interestingly, at the OOT the low-frequency elastic modulus of the diblock increased abruptly, whereas that of the triblock decreased. In contrast, the modulus of the cubic phase was roughly independent of chain architecture. Chain relaxation parallel and perpendicular to the cylinders was probed by measuring the elastic modulus of a macroscopically aligned sample in directions parallel G and perpendicular (G) to the cylinder orientation. For both materials G < G < G where G is the elastic modulus of a randomly oriented sample. This result is attributed to the ability of the unentangled PS blocks to move along the direction of the cylinder axis, and thus relax the stress in the PI matrix in the parallel alignment. In each of the three cylindrical orientations the triblock had a larger modulus than the diblock, which is attributed to the presence of bridging PI blocks that connect distinct PS domains. About 20° below the OOT G showed a distinct change in its temperature dependence, which, coupled with SAXS measurements, is indicative of the onset of an undulation in the cylinder diameter that presages the pinching off of cylinders into spheres, as recently predicted by theory. The use of oriented samples also permitted SAXS confirmation of an approximate epitaxial relationship between the cylinder and the sphere unit cells, although a distinct change in the location of the structure factor maximum, q*, is noted at the OOT. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2811–2823, 1997  相似文献   

7.
The hybrid orbitals of tetrahedral oxy-ions containing some d character have been calculated by maximum overlap method. The d characters of hybrid orbitals increase in the order of SiO, PO, SO, ClO, and decrease in order of GeO, AsO, SeO, BrO. The bond strengths are also obtained for these ions. The hybrid Orbital of VO, CrO, and MnO are of the type d3s as the result of calculation.  相似文献   

8.
We derived the necessary conditions to which the vector coupling coefficients (VCC ) a and b describing atomic L,S-multiplets of the configurations dN (1 ≤ N ≤ 9), should satisfy. Special attention is paid to the states of non-Roothaan type for which VCC depend on the choice of degenerate d-orbitals basis set determined within the accuracy up to an orthogonal transformation u. It is shown that for such states the direct sum of matrices ‖a‖ and ‖b‖ must be the non-symmetric matrix. Obtained VCC were used for the ab initio calculations (basis set (14s9p5d)/[8s4p2d] from [15]) on first-row transition atoms (from Sc to Cu) to compare to similar calculations [16], in which the Peterson's VCC have been used, and with calculations [15] carried out by the atomic SCF program [4] as well.  相似文献   

9.
The coordination polymers [(CuCN)2(μ-2 Mepyz)], [CuCN(μ-2 Mepyz)] and [CuCN(μ-4 Mepym)] ( 1 – 3 ) (2 Mepyz = 2-methylpyrazine; 4 Mepym = 4-methylpyrimidine) may be prepared by self-assembly in acetonitrile solution at 100 °C ( 1 , 3 ) or without solvent at 20 °C ( 2 ). All three contain [CuCN] chains that are bridged by the bidentate aromatic ligands into sheets in 1 and 3 D frameworks in 2 and 3 . Reaction of CuSCN with these heterocyclic diazines at 100 °C leads to formation of the lamellar coordination polymers [(CuSCN)(μ-2 Mepyz)] ( 4 ) and [CuSCN · (4 Mepym-κN1)] ( 5 ), which contain respectively [CuSCN] chains and trans-trans fused [CuSCN] sheets as substructures. The presence of an asymmetric substitution pattern in 2 Mepyz and 4 Mepym induces the adoption of a chiral structure by 2 and 5 (space groups P212121 and P1).  相似文献   

10.
The concept of the equalization of atomic electronegativities accompanving molecule formation is applied to a study of the electronic structure of polyhedral clusters of main-group atoms such as Ge, Sn, Pb, Tl, and Bi. Emphasis is placed upon charged clusters such as Sn9?x Pb(x = 0 → 9), Sn9-xGe, Sn8?xPbx Tl5?, Sn2Bi, SnTe, etc. The role of the relativistic spin-orbit splitting of an np shell into np1/2 and np3/2 subshells in modifying atomic and hence molecular electronegativities is discussed. Correlations are made between calculated charge distributions and observed199 Sn NMR chemical shifts for clusters of a given size and charge. It is concluded that a useful picture of charge distributions in these clusters may be obtained from electronegativity equalization considerations.  相似文献   

11.
In this paper, the efficient evaluation of the atomic integrals I =∫rrrrrrer1?βr2?γr3dτ with one or two factors r is described. These integrals are necessary for a lower-bound calculation for Li-like systems using the method of variance minimization or Temple's formula. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Silicon analogs of aromatic monocyclic ions, (SiH) ( 4 ), (SiH) ( 5 ), and (SiH) ( 6 ) have been studied ab initio at MP 2(full)/6-31G *. The D3h structure of Si3H3+ is the global minimum, whereas other two ions are nonplanar. The D2d structure of (SiH) is less folded than the carbon analog and possesses a higher stabilization energy. Stabilization energies for the monocharged ions are diminished with respect to the corresponding carbons © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Nucleosides and Nucleotides, Part 11. Phosphorylation of 1-(2′-Desoxy-β-D-ribofuranosyl)-2(1H)-pyridon and its Behaviour in the Synthesis of Dinucleotides The behaviour of the unnatural nucleoside 1-(2′-deoxy-β-D-ribofuranosyl)-2(1H)-pyridon (Πd, 1 ) in the synthesis of dinucleotides with purine deoxynucleotides was studied. The optimized preparation of the protected dinucleoside phosphates (MeOTr) Πd pG ( 5 ) and (MeOTr) Πd pA ( 7 ) using the diester method of Khorana with DCC as condensing agent is described. The removal of the N-acyl- and p-methoxytrityl groups was effected by successive treatment with conc. ammonia solution and acetic acid/water 1:1 at 23° yielding the free dinucleoside phosphates ΠdpGd ( 9 ) and ΠdpAd ( 11 ). In a similar way, starting from (CNEt) pΠd( 15 ), the dinucleotides pΠdpG ( 16 ), pΠdpGd ( 18 ), pΠdpA ( 17 ) and pΠdpAd ( 19 ) were synthesized. The nucleotide 1-(5′-O-Phosphoryl-2′-deoxy-β-D-ribofuranosyl)-2(1H)-pyridon (pΠd, 3 ) was prepared in excellent yield by selective phosphorylation of Πd ( 1 ) using phosphorylchloride in triethyl phosphate at ?40°. Deoxyadenosine was phosphorylated in the same way. The compounds were characterized by UV. spectroscopy, chromatography and enzymatic degradation.  相似文献   

14.
A set of isothermally melt-crystallized polyethylene samples was examined using small-angle x-ray scattering (SAXS). Time and temperature of crystallization were the variable parameters used to create the set of samples. Following background subtraction, desmearing, and application of the Lorentz factor to the raw SAXS data it is possible to see many orders of reflection. This suggests that much higher degrees of order are present in isothermally melt-crystallized samples than had previously been thought possible. A combination of SAXS and DSC data indicates that there is no evidence for isothermal thickening in these samples. This study, coupled with data obtained from PE single crystals, produced information concerning the extrapolation of single-crystal data to fit bulk systems. In addition, the equilibrium melting point T determined is somewhat lower than previously claimed. This study also suggests that the surface energy of the mature crystals is always lower than that of the nucleated state and/or the nucleation factor Kσen increases with decreasing supercooling.  相似文献   

15.
Ab initio molecular orbital (MO) calculations are carried out on the nonidentity allyl transfer processes, X? + CH2CHCH2Y ? CH2CHCH2 X + Y?, with X? = H, F, and Cl and Y = H, NH2, OH, F, PH2, SH, and Cl. The Marcus equation applies well to the allyl transfer reactions. The transition state (TS) position along the reaction coordinate and the TS structure are strongly influenced by the thermodynamic driving force, whereas the TS looseness is originated from the intrinsic barrier. The intrinsic barrier, ΔE, looseness, %L?, and absolute asymmetry, %AS?, are well correlated with the percentage bond elongation, %CY? = [(d ? d)/d] × 100 and/or %CX?. The %CY? and the bond orders indicate that a stronger nucleophile and/or a stronger nucleofuge (or a better leaving group) leads to an earlier TS on the reaction coordinate with a lesser degree of bond making as well as bond breaking. These are consistent with the Bell-Evans-Polanyi principle and the Leffler-Hammond postulate. © 1995 by John Wiley & Sons, Inc.  相似文献   

16.
The unperturbed chain dimensions (〈R2o/M) of cis/trans‐1,4‐polyisoprene, a near‐atactic poly(methyl methacrylate), and atactic polyolefins were measured as a function of temperature in the melt state via small‐angle neutron scattering (SANS). The polyolefinic materials were derived from polydienes or polystyrene via hydrogenation or deuteration and represent structures not encountered commercially. The parent polymers were prepared via lithium‐based anionic polymerizations in cyclohexane with, in some cases, a polymer microstructure modifier present. The polyolefins retained the near‐monodisperse molecular weight distributions exhibited by the precursor materials. The melt SANS‐based chain dimension data allowed the evaluation of the temperature coefficients [dln 〈R2o/dT(κ)] for these polymers. The evaluated polymers obeyed the packing length (p)‐based expressions of the plateau modulus, G = kT/np3 (MPa), and the entanglement molecular weight, Me = ρNanp3 (g mol?1), where nt denotes the number (~21) of entanglement strands in a cube with the dimensions of the reptation tube diameter (dt) and ρ is the chain density. The product np3 is the displaced volume (Ve) of an entanglement that is also expressible as pd or kT/G. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1768–1776, 2002  相似文献   

17.
Magnetic interactions in some oxyfluoroferrites of spinel structure with the formula ZnxMe2?xO4?xFx (M = Fe, Co, Ni) Whereas the ferromagnetic spin arrangement of the B-cations is not modified by the Zn2+?Fe3+ substitution in the ZnFe[Fe2+Fe3+]O4?xFx (0 ≤ x ≤ 0,50) spinel, this same substitution leads to a spin canting in the ZnFe[Co2+Fe3+]O4?xFx and ZnFe[Ni2+Fe3+]O4?xFx (0 ≤ x ≤ 0,80) simples. The difference in the magnetic behaviors with regard to the AB and BB interactions can be explained on the basis of the magnetic exchange theory.  相似文献   

18.
Synthesis, Vibrational Spectra, and Crystal Structure of ( n ‐Bu4N)2[(W6Cl )F ] · 2 CH2Cl2 and 19F NMR Spectroscopic Evidence of the Mixed Cluster Anions [(W6Cl )F Cl ]2–, n = 1–6 The reaction of (n‐Bu4N)2[(W6Cl)Cl] with CF3COOH in dichloromethane gives intermediately a mixture of the cluster anions [(W6Cl)(CF3COO)Cl]2–, n = 1–6. By treatment with NH4F the outer sphere coordinated trifluoracetato ligands are easily substituted and the components of the series [(W6Cl)FCl], n = 1–6 are formed and characterized by their distinct 19F NMR chemical shifts. An X‐ray structure determination has been performed on a single crystal of (n‐Bu4N)2[(W6Cl)F] · 2 CH2Cl2 (orthorhombic, space group Pbca, a = 15.628(4), b = 17.656(3), c = 20.687(4) Å, Z = 4). The low temperatur IR (60 K) and Raman (20 K) spectra are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constants are fd(WW) = 1.89, fd(WF) = 2.43 and fd(WCl) = 0.93 mdyn/Å.  相似文献   

19.
Comparison of the optimized geometries and SCF energies for the series XO, XO2, XO, XO, with X = S,N shows that d(S) functions cause larger bond shortening and energy drop than d functions centered on first-row atoms. This is further emphasized on comparing the separate effects of d(central atom) and d(O) functions for SO2 and NO, which are similar only for the first-row molecule. The d(S) functions are also essential for proper prediction of the OSO angles. The deformation densities calculated for each series and the corresponding X–O shared populations, change as expected on adding electrons first into σ* then into π* molecular orbitals. In the regions around nuclei the deformation densities express the behavior of the atomic s and p valence orbitals or of their product inside their radial nodes. Introduction of d functions causes substantial polarization effects. For X = N these are mostly local except in the bonding regions where d(N) and d(O) functions are somewhat interchangeable. However, d(S) functions induce also unique changes in the deformation density near O. They cause π and π′ charge migration from O to S and a σ flow in the opposite direction. These effects are largest for the hypervalent species. The unique populations of the d(S) functions are much larger than those of d(N) and d(O) functions. The contribution of d(S) functions to bonding is related to the larger amplitude at small radii of the atomic 3d(S) orbital as compared with that of 3d(N). The difference in amplitudes is related to penetration effects. Diffuse p functions affect geometries and SCF energies of doubly, but not singly negative ions. However, they mostly describe the diffuse nonbonding clouds and do not affect bonding patterns.  相似文献   

20.
Ab initio calculations of potential energy, dipole moment, equilibrium OH distance, force constants, and anharmonic frequencies, and correlations between these quantities, are presented for a water molecule and an OH? ion in a uniform electric field of varying field strength. It is explained why a bound H2O molecule in nature always experiences a frequency downshift with respect to the free molecule, and a bound OH? ion either a downshift or an upshift. The frequency-field variation is well accounted for by the expression ΔνOH ∝ ?E·(dμ/drOH + 1/2 · ?μ/?rOH). A frequency maximum occurs at the field strength where ?μ/?rOH ~ 0. Two cases can be discerned: (1) the frequency maximum falls at a positive field strength when dμ/drOH is negative (this is the situation for OH?), and (2) the maximum frequency falls at a negative field when dμ/drOH is positive (this occurs for water). In general, for an OH bond in a bonding situation where the intermolecular interactions are dominated by electrostatic forces, the nonlinearity of the frequency shift with respect to an applied field is governed by how close to the frequency maximum one is, i.e., by both dμ/drOH and ?μ/?rOH. Correlation curves between the external linear force constant, kext, and rOH,e are closely linear over the whole field range studied here, whereas the frequency vs. rOH,e and force constants vs. rOH,e correlation curves form two approximately linear, parallel branches, corresponding to “before” and “after” the maximum in the frequency vs. field curves. Each branch of the v vs. rOH,e curves has a slope of ~ ?16,000 cm?1/Å. © 1993 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号