首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究随着三元碱土离子配比变化其正硅酸盐物相组成、发光性能的变化规律,优选高效荧光粉,同时探讨单相区和混合相区发光性能的变化内在机制,建立组分-结构-发光性能关联,本文采用高温固相法制备(Mg_(1-x-y)Ba_xSr_y)_(1.95)SiO_4∶0.05Eu系列荧光粉,共计44个样,分析其二元、三元物相组成和光谱,得出其物相组成和紫外激发发光CIE值。实验表明,(Mg_(1-x)_(-y)Ba_xSr_y)_(1.95)SiO_4∶0.05Eu体系中物相组成随着组元含量存在渐变性;富Ba端形成了Ba_2SiO_4相单相区(Sr最大量含量为35%、Mg为30%),单相区随着Sr~(2+)、Mg~(2+)固溶,晶格常数减小,结晶度提高。(Mg_(1-x-y)Ba_xSr_y)_(1.95)SiO_4∶0.05Eu荧光粉在紫外激发下其颜色和亮度随着组元含量也呈现渐变性,Ba_2SiO_4相单相区荧光粉均为绿色荧光粉且随着Sr~(2+)、Mg~(2+)固溶荧光亮度逐渐增大(精细光谱表明单相区内Mg~(2+)、Sr~(2+)离子有促进Eu~(2+)离子进入高发光效率的格位的效果);Mg_2SiO_4-Sr_2SiO_4二元系列为红色荧光粉;单相区外的样品点随着Ba~(2+)的减少,荧光粉紫外激发荧光颜色逐渐由绿变红(混合物相中Eu离子配位空间逐渐减小,Eu离子逐渐以Eu~(3+)离子形式存在)。(Mg_(1-x-y)Ba_xSr_y)_(1.95)SiO_4∶0.05Eu系列荧光粉的相组成、结构及发光性能随组元呈现渐变性关系,借鉴相图建立方法,可建立三元色像图(由样品发射光谱得出的CIE色像点,基于散点分布建立色像图);利用三元色像图可系统性优选高效荧光粉(优选出最佳绿色和红色荧光粉样品点为:(Mg_(0.3)Ba_(0.65)Sr_(0.05))_(1.95)SiO_4∶0.05Eu和(Mg_(0.65)Sr_(0.35))_(1.95)SiO_4∶0.05Eu)。  相似文献   

2.
采用两步法成功合成了单一基质双光色Ba_(10-x)(PO_4)_4(SiO_4)_2∶xEu~(2+)荧光粉,研究了稀土离子占据不同的晶格格位对荧光粉光谱特性的影响。结果表明:两步法合成的荧光粉发射光谱由414 nm的蓝光波带和504 nm绿光波带两种光色组成,而传统的高温固相法制备的荧光粉只有504 nm处的绿光发射。荧光粉发光性能与Eu~(2+)离子在磷灰石晶体结构中占据的晶格位置关系十分密切。两步法荧光粉双光色的形成主要是由于在第一步氧化气氛合成过程中Eu~(3+)离子取代了基质结构中的BaⅠ和BaⅡ两个格位的Ba2+离子;在第二步还原过程结束后,Eu~(2+)离子仍然占据着两种格位,从而形成了两种具有不同配位环境的发光中心。此外,双发射峰的相对强度能够通过Eu~(2+)离子对BaⅠ格位的取代率而调节,进而实现光谱的调变。  相似文献   

3.
采用溶胶-凝胶法合成了系列Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)红色荧光粉。通过X射线粉末衍射、荧光光谱等对合成的荧光粉样品进行表征,并系统地研究了烧结温度、Eu~(3+)掺杂浓度对样品发光强度的影响。结果表明:该荧光粉能被近紫外光(393 nm)有效激发;当烧结温度为800℃、Eu~(3+)的掺杂量为5.0%(摩尔分数)时,样品发射出的荧光强度最强。Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)样品的色坐标(0.684,0.316)与红色标准值(x=0.670,y=0.330)非常接近。Ca_8Zn(SiO_4)_4Cl_2:Eu~(3+)是一种很好的新红色荧光粉。  相似文献   

4.
以BaCO_3、SiO_2、Eu_2O_3为原料在还原气氛下采用高温固相法制备了Ba_3SiO_5∶Eu荧光粉体。实验结果表明,制备Ba_3SiO_5的最佳工艺条件是Ba/Si比为3,1 200℃保温4 h。光谱分析表明,Ba_3SiO_5∶Eu荧光粉在254,365,410 nm激发下发射主峰为566 nm(Eu~(2+)的4f~n~(-1)5d→4f~n)宽带发射,量子效率分别为70%、50%、10%,荧光寿命为百纳秒级;以566 nm为监视波长测得激发谱为主峰在250~450 nm范围内的宽带发射,主峰为360 nm,且在410 nm出现小峰; Eu离子最佳掺杂浓度为5%,由发光强度随掺杂离子浓度变化曲线,可以得出Ba_3SiO_5中Eu离子能量传递是基于电四级-电四级作用。  相似文献   

5.
采用高温固相还原法合成Ca_(12-x-y)M_xAl_(14)O_(32)F)2∶yEu(M=Mg,Sr,Ba)体系荧光粉,分别采用X射线粉末衍射仪和荧光光谱仪测试其物相及荧光性能,通过掺杂碱土金属离子可以调整Ca_(12)Al_(14)O_(32)F_2∶Eu~(3+)/Eu~(2+)的组成和结构,进而影响Ca_(12-x-y)M_xAl_(14)O_(32)F_2∶yEu的发光性能。研究结果表明:在Ca_(12)Al_(14)O_(32)F_2∶Eu中掺杂一定浓度的Mg~(2+)不利于Eu~(3+)的还原,掺杂一定浓度的Sr~(2+)或Ba~(2+)有利于Eu~(3+)的还原;通过改变碱土金属离子的掺杂浓度调节Eu~(3+)和Eu~(2+)的浓度比,可以调整蓝光发射和红光发射的强度比,进而使发光颜色从蓝色变为淡紫色,再变为蓝绿色。  相似文献   

6.
利用高温固相法制备NaMg_(4-x)Ca_x(VO_4)_3∶0.01Eu~(3+)(x=0~2)、NaMg_(2.1)Ca_(1.9-y)(VO_4)_3∶yEu~(3+)(y=0~0.19)、NaMg_(2.1)Ca_(1.9-y)(VO_4)_3∶yEu~(3+),yX~-(X=Cl,F)和NaMg_(2.1)Ca_(1.9-2y)(VO_4)_3∶yEu~(3+),yM~+(M=Li,Na,K)系列荧光粉,采用X射线粉末衍射仪、扫描电子显微镜和荧光分光光度计对样品进行了结构和性能表征。探讨基质结构变化和Li~+、Na~+、K~+、F~-、Cl~-等阴阳离子的电荷补偿作用对VO■和Eu~(3+)发光性能的影响以及能量传递机理。研究表明立方相NaMg_2Ca_2(VO_4)_3比四方相NaMg_4(VO_4)_3更能被紫外光有效激发,同时发射基质的蓝绿光和铕离子的红光,且VO■和Eu~(3+)之间的能量传递效率达到42.21%。电荷补偿剂能显著提高Eu~(3+)的发射强度,同时基质发光强度减弱表明电荷补偿剂增强了基质与激活剂离子间的能量传递。通过控制合成条件可以得到单一基质白光发射荧光粉。  相似文献   

7.
采用CaCO3,MgO,SiO2,Eu2O3原料,通过高温固相法制备了Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉。通过XRD图谱和PL光谱图,研究了Eu的掺杂浓度与助溶剂(NH_4Cl,BaF_2)对Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉结构、发光性能和热稳定的影响。XRD图谱对比结果表明,制备的Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉XRD图与理论计算得到的图谱几乎一致。Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉在360~450nm有很强的激发强度,并且在440nm激发下发射峰值波长为530nm的发射光。随着Eu~(2+)离子浓度的增加,发射光谱出现了红移,且在Eu~(2+)离子浓度约为6%时发生了浓度猝灭现象。当添加NH_4Cl和BaF_2作为助溶剂,Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉的发光强度有一定提高。与未添加助溶剂的Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉的发光强度相比,添加NH_4Cl助溶剂后发光强度增加了70%。此外,当温度升高至150℃时,Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉和商用绿色荧光粉的发光强度分别降低了7.6%和14%,表明Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉具有良好的热稳定性。这些发光性能均表明Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉是是一种可应用于固态照明的有前景的绿色荧光粉。  相似文献   

8.
采用高温固相法制备了新型(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉,其中包括3个二元碱土离子配比系列和3个代表性三元碱土离子配比系列(Ba不变而Mg/Sr比连续变化、Mg/Sr比不变而Ba含量连续变化)共计6个系列,并研究其光谱性能(激发谱和发射谱)、紫外(254和365 nm)发光照相记录及CIE值对应色像。借鉴三元相图的建立思路,由这些二元和代表性三元数据推导三元色像图,用于新型荧光粉的系统开发。所制备的荧光粉系列包括:Mg2SiO4-Sr2SiO4,Ba2SiO4-Sr2SiO4,Mg2SiO4-Ba2SiO4,Ba原子比含量为0.2(Mg/Sr原子比连续变化),Ba原子比含量为0.6(Mg/Sr原子比连续变化),Mg/Sr原子比为1/4(Ba原子比含量连续变化系列)。其对应的254 nm激发下光谱性能、发光照相记录、和CIE色像分析表明:Eu离子可以三价和二价形式存在于(Mg1-x-yBaxSry)2SiO4中;二元系列中(Mg1-xBax)2SiO4和(Ba1-ySry)2SiO4基体中随着Ba原子比的增加荧光粉逐渐由红(对应Eu3+5D0→7F1和5D0→7F2电子跃迁窄带发射)变绿(对应Eu2+4fn-15d→4fn电子跃迁发射宽带发射)且前者变化的更快;二元系列中(Mg1-ySry)2SiO4系列为红色荧光粉,且随着Sr含量增加红色发光增大;三元系列中(Bax(Mg0.2Sr0.8)1-x)2SiO4(Mg/Sr=1/4)随着Ba离子量增加荧光粉也逐渐由红变绿,其变化速度介于Mg/Sr比等于0(即Ba2SiO4-Sr2SiO4系列)和Mg/Sr比等于∝(即Ba2SiO4-Mg2SiO4系列);三元系列中(Ba0.2SryMg0.8-y)1.95SiO4为红色荧光粉,而(Ba0.6SryMg0.4-y)2SiO4随着Mg/Sr原子比增加逐渐由红转蓝绿光。365 nm激发下荧光发射的变化规律与254 nm激发下大体一致,但是同一样品在365 nm激发下其绿光波段发射要比254 nm激发要强且其红光波段发射要比254nm激发要弱,故(Mg1-xBax)2SiO4,(Ba1-ySry)2SiO4,(Bax(Mg0.2Sr0.8)1-x)2中对应的由红变绿时Ba含量分别为40at%,60at%,60at%(254 nm激发下60at%,80at%,70at%)且(Ba0.6SryMg0.4-y)2SiO4中由红变绿的Mg/Sr比为1/4(254 nm激发下为2/3)。据此建立Eu掺杂Ba2SiO4-Mg2SiO4-Sr2SiO4紫外激发色像图。借由色像图可知(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉紫外激发下发射光变化规律,即基体组分靠近Ba2SiO4端发射绿色而靠近Mg2SiO4或Sr2SiO4端发射红色,Mg/Sr比越大随着Ba原子的增加荧光粉的由红转绿的速度越快;同一样品在365 nm激发下其绿光波段发射要比254 nm激发要强且其红光波段发射要比254 nm激发要弱,(Mg1-x-yBaxSry)1.95SiO4∶0.05Eu荧光粉中当Ba>80at%,Mg>90at%(或Sr>80at%)荧光粉可分别用作高效绿色、红色荧光粉;此外,当组分为(Mg0.8Sr0.2)1.95SiO4∶0.05Eu,(Ba0.8Mg0.16Sr0.04)1.95SiO4∶0.05Eu是紫外激发下(254和365 nm)最好的红色和绿色荧光粉。  相似文献   

9.
通过高温固相法制得双峰可调节本征半导体发光Ba Zn_2(BO_3)_2∶Eu~(3+)荧光粉,此类荧光粉在300~400nm的紫外波段有很强的吸收。在375 nm的紫外光激发下,该荧光粉产生了两个宽带的发射峰,分别位于550nm和615 nm处。并且,在395 nm的紫光激发下,荧光粉会由于Eu~(3+)离子的~5D_0→~7F_2电偶极跃迁产生一个位于615 nm的强宽发射峰,这表明Eu~(3+)离子占据了反演对称中心的位置,取代了Ba Zn_2(BO_3)_2中部分的Ba~(2+)离子。当Eu~(3+)的摩尔分数达到10%时,发生浓度猝灭。在不同浓度的Eu~(3+)离子的掺杂下,Ba Zn_2(BO_3)_2∶Eu~(3+)荧光粉的发光从黄色延伸到红色,实现了荧光粉的色度可调。  相似文献   

10.
采用固相反应法合成了Eu~(3+)离子激活的Ca_(1.9)Eu_(0.1)NaMg_(2-x)Zn_x(VO_4)_3(0≤x≤1),并研究了其发光和热猝灭性能。经粉末X射线衍射确认,反应产物由目标相和微量杂质相EuVO_4构成。在355 nm激发下,样品中均能同时观察到来自[VO_4]_3-基团和Eu~(3+)离子的特征发光。研究结果表明:随着x值的增加,上述两种发光的强度均先增加后降低;而它们的最强激发峰位置由347 nm逐渐地红移至356 nm,Stokes位移也逐渐地减小。这种现象应归因于Zn3d轨道和O2p轨道间很强的轨道杂化效应,这种效应随着x值的增加而逐渐增强。此外,Eu~(3+)离子荧光发射强度最大值对应的x值与自激活荧光的不同。当x=1.0时,两者的相对强度差别最大。经荧光热猝灭测试确认,上述现象是由样品中的自激活荧光表现出比Eu~(3+)离子荧光更严重的荧光热猝灭造成的。因而,在紫外光激发下,样品发出荧光的颜色具有温度敏感性。  相似文献   

11.
采用高温固相法合成了Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)荧光粉,X射线粉末衍射数据分析结果表明,试样为氧磷灰石结构,属于六方晶系,具有P63/m(176)空间点群结构.荧光光谱分析结果表明,Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)激发光谱为位于200~600nm,由275nm、336nm两个宽峰和392nm、461nm、466nm、523nm等锐线峰组成.两个宽带激发峰可由272nm、300nm、336nm三峰拟合而成,峰面积比为1:0.52:4.09.272nm、300nm峰归属于Eu3+的电荷迁移激发跃迁态,336nm峰来自Eu2+的f-d跃迁.在393nm激发下,Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)发射光谱在500~750nm范围内呈现多条锐线发射,在613nm处发射峰最强,以电偶极跃迁5D0→7F2为主,Eu3+占据无反演对称中心格位.Eu3+磁偶极跃迁5D0→7F1处的峰可由584.5nm、588.5nm、594nm、597nm四峰拟合而成,表明Eu3+进入基质晶格中占据4f(C3)和6h(Cs)两种格位.X射线光电子能谱图分析结果表明,试样中Eu3+与Eu2+的含量比接近2∶1.Eu2+与Eu3+存在能量传递作用,试样在紫外灯下照射呈现烛光黄色,可用于LED.  相似文献   

12.
利用高温固相法制备了BaGd_2(MoO_4)_4∶Tb~(3+)与BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)荧光粉,并借助于X射线衍射(XRD)、激发光谱、发射光谱及荧光衰减曲线对样品的结构及发光性能进行了表征。在290 nm激发下,BaGd_2(MoO_4)_4∶Tb~(3+)样品在550 nm处具有较强的绿光发射,表明该样品可用作绿色荧光粉。Tb~(3+)离子的最佳掺杂浓度为50%,电偶极间相互作用是引起浓度猝灭效应的主要原因。当在BaGd_2(MoO_4)_4∶Tb~(3+)荧光粉中共掺入Eu~(3+)离子后,可同时观测到Tb~(3+)与Eu~(3+)离子的特征发射峰。随Eu~(3+)掺杂浓度的升高,Tb~(3+)离子的发光强度逐渐下降,而Eu~(3+)离子的发光强度逐渐增加。根据BaGd_2(MoO_4)_4∶Tb~(3+),Eu~(3+)中Tb~(3+)离子的荧光寿命计算了Tb~(3+)与Eu~(3+)离子间的能量传递效率,并根据荧光寿命与激活离子掺杂浓度的关系证实了能量传递机制为电偶极间相互作用。  相似文献   

13.
本文测定了一些稀土元素掺杂的发光体中的俘获中心的热致和光致电离的能级,所研究的发光体有Sr_3(PO_4)_2:Eu,BaFCl:Fu,Ba_3(PO_4)_2:Eu,YVO_4:Eu,Y_3Al_5O_(12):Ce,YPO_4:Tb和Y_2SiO_4:Ce等。这些发光体中光致和热致电离能级深度之差,明显地大于ZnS中的,由此可以表明这些化合物的离子性较强。 本文还揭示了多数俘获中心在光激励下的电荷释放的机理。 对Sr_3(PO_4)_2:Eu,Ba_3(PO_4)_2:Eu和Y_2SiO_5:Ce的发光性质研究表明,这些发光体的紫外发射具有激子发射的性质。  相似文献   

14.
陈哲  谢鸿  严有为 《光学学报》2007,27(1):111-115
采用溶液燃烧法在600℃成功合成了(BaxMg)2/(x 1)Al10O17∶Eu2 (0.6≤x≤1.2)蓝色荧光粉,着重研究了基质阳离子Ba/Mg比值的变化对其晶体结构及发光特性的影响。结果表明,合成的产物为纯相,且随Ba/Mg比值的增加,样品的晶格参量逐渐增加;当Ba/Mg比增加时,发射光谱的强度明显增强,至Ba/Mg为0.9时达到最大值,然后随Ba/Mg比继续增大,发射光谱的强度反而下降;Ba/Mg比值减少,导致基质的晶场增强和电子云膨胀效应的发生,致使Eu2 发射主峰向长波方向移动。Eu2 的掺杂浓度对样品的发光性能有显著的影响,随Eu2 浓度增大,发光中心增多,Eu2 离子间相互作用增强,能量传递加快,发光强度逐渐增大,并达到一个最大值。此后,随Eu2 的浓度进一步增加,Eu2 之间的能量传递速率将超过发射速率,呈现浓度猝灭特性。  相似文献   

15.
采用高温固相反应法制备了Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)系列荧光粉,研究Y~(3+)离子掺入对荧光粉发光性能的影响。对于Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入主要起到稳定Eu~(2+)价态的作用,避免Eu~(2+)氧化为Eu~(3+),从而提高Sr Si_2O_2N_2∶Eu~(2+)的发光性能。对于Ca Sr Si_2O_2N_2∶Eu~(2+),Y~(3+)离子掺入除了稳定Eu~(2+)价态作用外,还能有效减小Eu~(2+)取代Ca~(2+)后晶格膨胀引起的应力,提高Eu~(2+)在晶格中的溶解度。Sr_(1-x)Ca_xSi_2O_2N_2∶Eu~(2+)(x=0,0.15,0.3,0.6,0.75,0.95)系列荧光粉中随着Ca含量的增加,共掺Y~(3+)离子对样品发光强度的提高程度也随之增加(20%~80%)。  相似文献   

16.
采用高温固相法合成具有余辉性能的发光材料NaLa_(0.7)(MoO_4)_(2-x)(WO_4)_x∶0.3Eu~(3+)(x=0,0.5,1,1.5,2)。用X射线衍射(XRD)和荧光光谱对样品的晶体结构和发光特性进行表征。测试结果表明,在900℃下烧结8 h所合成的NaLa_(0.7)(MoO_4)_(2-x)(WO_4)_x∶0.3Eu~(3+)样品为纯相Na La(Mo O_4)_2,样品可被近紫外光393nm和蓝光462 nm有效激发,其发射主峰位于615 nm处,属于Eu3+的5D0-7F2跃迁。Na La_(0.7)(Mo O_4)_(2-x)-(WO_4)_x∶0.3Eu~(3+)的发光强度随着W6+浓度的增加而增大,当W6+掺杂量x=1时发光最强,而后随W6+掺杂浓度的增加出现浓度猝灭现象。通过计算得到样品在393 nm和462 nm激发下的色坐标,当W6+的掺杂量x=1时,样品的红光色纯度最好。  相似文献   

17.
采用固相反应法制备双层钙钛矿(La_(1-x)Eu_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0.0,0.1,0.2)多晶样品,并研究其结构,磁性和电输运性质.XRD结果表明,三个样品均为良好的单相结构.样品(La_(1-x)Eu_x)_(4/3)Sr_(5/3)Mn_2O_7(x=0.0,0.1,0.2)在低温区的ZFC曲线和FC曲线出现明显分歧,表现出团簇自旋玻璃的特征.对电阻率-温度曲线的拟合结果表明,三个样品在高温区的导电机制不同.我们认为这是由于半径较小的Eu~(3+)离子替代La~(3+)离子使La位离子平均半径减小,引起晶格发生畸变,同时,Eu~(3+)离子倾向于占据钙钛矿层与岩盐层之间的R-位,使La~(3+),Sr~(3+),Eu~(3+)离子在掺Eu样品中的分布更加有序导致的.  相似文献   

18.
采用水热法制备了白光LED用NaGd_(0.95-x)(WO_4)_2∶0.05Eu~(3+),x Bi~(3+)(x=0,0.02,0.04,0.06,0.08)和NaGd_(0.95-y)(WO_4)_2∶0.05Eu~(3+),y Sm~(3+)(y=0,0.01,0.02,0.03,0.04)系列红色荧光粉,通过X射线衍射仪、扫描电子显微镜及荧光分光光度计等表征手段分析了样品的物相结构、颗粒形貌以及发光性质。结果表明:少量离子掺杂对NaGd(WO_4)_2的晶体结构影响较小,样品均为四方晶系、白钨矿结构的纯相;颗粒形貌呈四方盘状,且粒度均匀,分散性良好,Bi~(3+)或Sm~(3+)的引入使颗粒尺寸由原来的4μm分别增加至5μm和6μm。该系列荧光粉均可被近紫外光(394 nm)有效激发,其最强发射峰位于614 nm处,归属于Eu~(3+)的5D0→7F2电偶极跃迁。掺杂适量的Bi~(3+)或Sm~(3+)可有效提高NaGd_(0.95)(WO_4)_2∶0.05Eu~(3+)荧光粉的发光强度和红光的色纯度,其中Sm~(3+)的引入对其影响更为明显。  相似文献   

19.
在77K测得的激发光谱说明Eu(DBM)_32AP(DBM:二苯甲酸甲烷根,AP:安替吡啉)络合物中Eu~(3+)离子仅有一种晶格格位.~5D_O→~7F_J(J=0-4)跃迁光谱说明中心Eu~(3+)离子具有C_(2v)格位对称性.实验测得的配位体总电荷为-2.75,与理论计算值-3.00吻合较好.  相似文献   

20.
本文研究了基质发光材料Na_5Eu(MoO_4)_4制备过程中加入H_2WO_4或SiO_2后发光增强的现象.对Na_5Eu(Mo(1-x)W_xO_4)_4体系,当0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号