首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
蛋白粉是健身者必备的营养补剂,市场需求在不断增加,一些不法商家为了谋取利益,在蛋白粉中加入廉价的粉末售卖。传统的蛋白粉掺杂的检测方法费时、费力,操作复杂,且成本昂贵。高光谱技术具有易于操作、在不损害实验样本的情况下可快速检测等优点,因此,提出使用高光谱技术以实现蛋白粉掺假检测。在蛋白粉中分别加入质量百分数5%~60%,浓度间隔5%的三类掺假物(玉米粉、大米粉和小麦粉),并采集所有样本的光谱信息。在对蛋白粉中的玉米粉、大米粉和小麦粉三类掺假物进行定性判别时,首先分别采用卷积平滑(SG)、标准化(Normalize)、多元散射校正法(MSC)、基线校正(Baseline)和标准正态变换(SNV)的预处理方法对光谱数据进行处理,然后建立基于主成分回归(PCR)、反向传播神经网络(BPNN)和随机森林(RF)的模型,其中基于全波段光谱MSC预处理方法下建立的RF模型最优,其整体准确率达到了100%,其对应的RP和RMSEP分别为0.997 9和0.018 9。在对蛋白粉中不同掺假物浓度进行定量分析时,对三类掺假样本的光谱分别进行SG,Normalize,MSC,Baseline和SNV的预处理,并建立LSSVM模型;比较不同预处理方法下的各模型之间的性能,在蛋白粉中掺玉米粉、大米粉和小麦粉的LSSVM预测模型最佳预处理方法分别是无、Baseline和Normalize,然后,采用连续投影算法(SPA)和竞争性自适应重加权算法(CARS)对其筛选,并建立LSSVM模型,三类掺假样本的SPA-LSSVM模型对应的RP为0.989 0,0.986 0和0.997 9,CARS-LSSVM模型对应的RP为0.991 0,0.994 6和0.999 1,故三类掺假样本的CARS-LSSVM模型预测效果更佳。研究表明:高光谱技术可以实现对蛋白粉掺假的定性、定量的检测,并且操作简单、检测快速和无损。  相似文献   

2.
传统食品掺假分析多集中于检测特定已知或者怀疑可能存在的掺假物,然而由于掺假形式的多样性以及新的掺假物不断出现,使得传统检测方法具有局限性。目前,全蛋粉作为鲜蛋理想替代品掺假现象十分严重,然而不管是国内还是国外,其掺假检测都鲜有研究。因此,为了探索一种快速检测全蛋粉掺假的方法,研究尝试使用最近快速发展起来的具有绿色、无损等优点的高光谱技术来检测全蛋粉掺假的可行性。从不同地区收集不同品牌的鸡蛋全蛋粉,按不同比例分别掺入淀粉、大豆分离蛋白、麦芽糊精以及三种掺假物的混合物进行试验样品的制备。样品进行光谱采集后,采用ENVI软件选取感兴趣区域(ROI)后提取出平均光谱。根据获得的光谱数据建立全波段下支持向量机(SVM)模型进行掺假的判别并采用偏最小二乘回归(PLSR)模型建立全波段与掺假浓度之间的关系。结果显示,采用径向基核函数所建立的SVM模型,其分类的正确率达到90%以上,基于PLSR建立掺假模型实际值与预测值相关系数R2P均高于0.90。为了简化模型,采用回归系数法(RC)及连续投影法(SPA)提取特征波长,根据特征波长下的光谱数据建立RC-PLSR和SPA-PLSR模型,结果显示,经简化的模型依然具有良好的性能,说明使用高光谱技术来检测全蛋粉掺假是可行且高效的。  相似文献   

3.
高光谱成像技术检测玉米种子成熟度   总被引:1,自引:0,他引:1  
成熟度是影响种子活力的重要因素之一,是种子质量的重要指标。种子分级时将成熟种子和未成熟种子区分开来可提高种子批活力,使种子批活力具有一致性。采用400~1 000 nm波段范围的高光谱成像技术研究成熟和未成熟玉米种子,找出二者区分度最高的特征波段图像,通过图像处理方法进行种子分类。选用主成分分析(PCA)法分析高光谱图像,分析差异最明显的PC2主成分图像的各波段权重系数并提取出特征波段(501 nm)。从70粒成熟度较低玉米种子样本高光谱图像上选取成熟和未成熟两类感兴趣区域,采用偏最小二乘回归(PLSR)法分析两类感兴趣区域的平均光谱,选取与成熟度相关的敏感波段(518 nm)。采用波段比运算并结合KW检验,分析两类感兴趣区域的平均光谱,找出差异最大的最优波段比(640 nm/525 nm)。以864粒玉米种子为研究对象,提取特征波段对应的单波段图像和最优波段比对应的波段比图像,采用图像处理技术分析图像并判别。结果表明:采用单波段灰度图像分割容易将玉米种子冠部的浅色部分误识别为种子成熟度较低的区域,识别准确率低;而采用640 nm/525 nm的波段比图像可以减轻这种不利影响,平均正确识别率为93.9%。该方法可以有效识别未成熟的玉米种子,为进一步开发在线分级装备提供了依据。  相似文献   

4.
猕猴桃形状特征是猕猴桃在产后分级处理过程的一项重要指标,不仅影响果实外观,也决定果实等级高低的划分。传统的形状分级方法大多采用人工分级,存在耗时长、效率低、重复性差且易受人为主观影响等问题。针对传统猕猴桃形状分级存在的问题,研究利用高光谱成像建立猕猴桃正常果和畸形果的分类检测方法。以成熟期的248个金魁猕猴桃(正常果107个,畸形果141个)作为研究样本,先利用可见-近红外高光谱成像系统采集猕猴桃样本的光谱数据,再采用主成分分析法对光谱数据进行降维,得到第一主成分图像。随后提取第一主成分图像的3个特征波长(682, 809和858 nm),并对其进行融合计算,生成新的光谱图像(融合图像)。然后利用四叉树分解算法对融合图像进行分割处理,并计算掩膜图像所对应的12组形状特征参数,结合偏最小二乘线性判别分析(PLS-LDA)、反向传播神经网络(BPNN)、最小二乘支持向量机(LSSVM)建立判别模型,对比分析,最终得到猕猴桃形状特征的最佳分类模型。结果表明,所建立的三种分类模型中, BPNN和LSSVM模型的分类效果较好,总体分类准确率均在95%以上; PLS-LDA的效果略差,训练集和测试集的总体准确率分别为80.12%和76.83%。其中BPNN模型训练集和测试集的总体分类准确率分别为98.19%和97.56%,总体误判个数分别为3和2,而LSSVM模型的总体准确率分别为97.59%和95.12%,总体误判个数分别为4和4。对猕猴桃正常果的检测,三种模型的分类效果分别为:LSSVM最好、 BPNN其次、 PLS-LDA最差。对猕猴桃畸形果的检测,三种模型的分类效果分别为:BPNN最优、 LSSVM其次, PLS-LDA效果最差。因此,猕猴桃形状特征的最佳分类模型是BPNN模型。试验结果说明,可利用高光谱成像对猕猴桃形状特征进行分类判别。为猕猴桃形状特征的快速、准确无损检测研究提供了理论支持。  相似文献   

5.
高光谱成像的猕猴桃糖度无损检测方法   总被引:1,自引:0,他引:1  
猕猴桃糖度是重要的猕猴桃内部品质衡量指标.传统的糖度检测耗时且有损样品,有效无损检测猕猴桃糖度含量对于其品质分级、储藏销售具有重大意义.基于高光谱成像技术的常见果蔬品质无损检测方法多数是采用竞争性自适应重加权算法(CARS)、连续投影算法(SPA)、主成分分析(PCA)、迭代保留信息变量法(IRIV)等算法中的某个单一...  相似文献   

6.
稻瘟病是世界公认的水稻重大病害之一.实现稻瘟病害的早期分级检测,对水稻病害早期防治及精准用药具有重要意义.以大田自然发病水稻为研究对象,采集稻瘟病发病早期染病叶片和健康叶片,获取所有叶片样本在400~1000 nm波段内的高光谱图像并提取光谱数据.水稻在染病之初不会立刻出现病斑,无法识别采集到的无斑叶片是否染病.为实现...  相似文献   

7.
柑橘真菌感染部位的高光谱成像快速检测   总被引:1,自引:0,他引:1  
真菌感染是柑橘的一种常见病害,是柑橘腐烂的主要因素,自动化检测出柑橘真菌感染可以有效提高柑橘的商品价值和市场竞争力。运用高光谱成像技术对真菌感染柑橘腐烂部位的缺陷特征进行了快速识别检测。基于ROI提取柑橘真菌感染光谱曲线,对光谱矩阵进行主成分分析,分析权重曲线后得到4个特征波段,分别为615,680,710和725 nm,然后对这4波段组合分别做主成分分析,通过分析权重曲线提取到615和680 nm两个特征波段,基于这两个特征波段做主成分分析,以第2主成分图像为基础识别柑橘真菌感染部位,识别率达到了100%。高光谱成像技术可用于快速检测柑橘真菌感染引起的腐烂缺陷,为开发水果分级和缺陷检测等相关仪器设备的研究提供了理论方法和依据。  相似文献   

8.
机采籽棉杂质分类检测为调整棉花清理机械加工参数和工序提供参考依据,对提升皮棉品质具有重要意义。但由于籽棉棉层分布不均匀,使得图像检测难度增大,使用传统的检测方法无法有效检测各类杂质。采用高光谱成像方法对机采籽棉中的棉叶、棉枝、地膜和铃壳(内外)五种杂质进行分类判别检测。首先采集120个机采籽棉样本的高光谱图像,选取感兴趣区域获取平均光谱曲线。发现由于物质构成的差异,不同杂质体现出不同的吸收和反射特性,不同种类物质之间的光谱差异大于同类物质。对提取的平均光谱曲线进行主成分分析(PCA),结果显示棉花、残膜和铃壳外与其他三类相比,有较好的聚集性和可分性,但是棉叶、铃壳内和棉枝三类相互叠加在一起,空间分布存在严重交叉重叠。以提取的平均光谱曲线为训练样本,选择线性判别分析(LDA)、支持向量机(SVM)和神经网络(ANN)三种分类判别算法,对算法参数进行寻优,并建立机采籽棉杂质分类判别模型。其中,经过LDA模型降维后的样本空间较PCA表现出了更好的聚集性和可分性,采用正则化防止过拟合,得到训练集准确率为86.4%,测试集准确率为86.2%;SVM模型的参数寻优结果为C=105,g=0.1,其训练集准确率为83.42%,测试集准确率为83.40%;ANN模型参数寻优得到隐含层数和神经元个数分别为2和17,训练集准确率为82.9%,测试集准确率为81.8%。对三种模型的分类效果和检测用时进行比较,LDA模型结果最优。通过对高光谱图像进行像素等级分类判别,结果显示棉花识别效果较好,植物性杂质都被有效检测,但是地膜和棉花存在误识别,分类效果与杂质光谱的分类判别模型结果一致。因此,采用高光谱成像技术可以快速、无损的检测和识别籽棉杂质,为棉花加工装备提供反馈参数,对棉花加工机械化和智能化有重要意义。  相似文献   

9.
农作物生长发育过程中经常会遭到病虫害等外界因素侵染,如果不能实施有效的监测诊断和科学的防治,极易引起农药喷洒不当或过量,不仅会影响作物的产量和种植户的经济效益,还会造成严重的环境污染。近年在广西大棚厚皮甜瓜上发生了一种严重的由瓜类尾孢(Cercospora citrullina)引起的甜瓜叶斑病,导致甜瓜减产和种植户的经济损失。故此应用高光谱成像开展甜瓜叶片的尾孢叶斑病检测,获取健康甜瓜叶片和受瓜类尾孢感染的具有不同病变程度的甜瓜叶片在380~1 000和900~1 700 nm的高光谱图像,选取感兴趣区域并获取相应的平均光谱反射率,比较发现健康叶片和不同病变程度叶片染病区域的平均反射率差异显著。在540 nm处附近,健康叶片和病变程度轻微的叶片的光谱具备波峰形态,随着病变程度增加,波峰逐渐消失;在700~750 nm处附近,叶片反射率曲线急剧上升,出现绿色植物光谱曲线显著的“红边效应”特征;750~900 nm范围,健康叶片与轻微病变区域的光谱反射率变化趋于平稳,而其他病变区域的反射率呈上升趋势,且健康叶片的反射率高于病变区域,反射率随病变程度增加而下降,这一变化规律一直持续到近红外波段的900~1 350 nm范围。运用主成分分析、最小噪声分离法观察叶片早期病变的特征,经主成分分析和最小噪声分离法处理后,特别是对于早期病变,样本受感染后发病的区域更为明显。基于高光谱图像提取的前三个主成分得分绘制三维散点图,虽然不同病变程度的部分样本有重叠,但病变样本与健康样本的分布区分明显。应用K-近邻法和支持向量机方法建立叶片病变判别模型,结果显示:KNN模型对健康样本测试集判别率为98.7%,病变样本的判别率随病变程度加重而逐渐升高;对病变程度较轻样本,支持向量机模型相比于KNN模型而言,判别正确率更高、分类效果更好;总体上,高光谱图像对健康样本的判别率较高(>97%),可用于健康样本与病变样本的识别,但对不同病变程度的区分效果欠佳。研究结果表明,高光谱成像可用于甜瓜尾孢叶斑病的检测,对不同病变程度的区分效果仍有待提高。  相似文献   

10.
基于高光谱成像的牧草粗蛋白含量检测研究   总被引:1,自引:0,他引:1  
粗蛋白(CP)是评价牧草营养价值和品质参数的关键指标。快速、准确地对牧草中粗蛋白含量进行评估在畜牧业生产研究中具有重要意义。为确定牧草粗蛋白含量的高光谱特征波段及最优检测模型,研究分别于2017年5月至9月间在黑龙江省杜尔伯特自治区的人工牧草场(羊草)内每月随机选取35个样本,5个月共采集175个样本。采样时在样本点处放置1 m×1 m的样方,将样方内所有牧草全部齐地面收割采集后称重并冷藏保存。将样本带回实验室后,立即进行牧草叶片高光谱图像采集,同时采用凯氏定氮法对采集的牧草样本进行粗蛋白化学值测定,以此建立牧草粗蛋白含量高光谱数据集。研究首先通过Savitzky-Golay卷积平滑(SG)、多元散射校正(MSC)、变量标准化(SNV)、一阶导数(1-Der)和直接正交信号校正(DOSC)方法5种预处理方法对高光谱数据进行处理后分别建立偏最小二乘回归(PLSR)检测模型,从中确定最优预处理方法。利用最优预处理结果,分别采用连续投影算法(SPA)和随机蛙跳算法(RF)进行牧草粗蛋白含量的特征波段选择,并利用选择结果分别进一步建立PLSR模型,以此确定适合粗蛋白含量的特征波段选择方法,确定最优高光谱检测模型。结果表明,在五种高光谱预处理方法中,基于SNV方法预处理后所建立的高光谱PLSR模型表现最优(R2-P=0.929,RMSE-P=6.344 mg·g-1,RPD=4.204)。利用连续投影算法筛选的粗蛋白含量特征波长为30个,分布于530~700和940~1 000 nm范围内。经随机蛙跳算法确定的粗蛋白含量特征波段为6个,分别为826.544,827.285,828.766,971.012,972.494和973.235 nm。因此,该研究中牧草粗蛋白含量最优高光谱检测模型为SNV-RF-PLSR(R2-P=0.933,RMSE-P=6.034 mg·g-1,RPD=4.322),模型精度较高。该研究结果为牧草粗蛋白含量的高光谱检测提供了最优模型和理论基础,同时为指导草业生产开拓了新的技术思路。  相似文献   

11.
粮油品质安全至关人类营养健康与生命安全。常规检测粮油品质安全方法,由于操作困难、破坏性强、费用高、试剂污染等缺点,不能满足快速无损,高效无污染的要求,难以与工业4.0接轨。整合光谱和图像手段的高光谱成像技术,伴随着化学计量学的发展,突破了常规检测方法局限性,是粮油品质安全检测技术的发展趋势。在大量文献的基础上,综述了高光谱成像技术原理,以及在品质方面(组分测定、发芽检测、品种分类)和安全方面(真菌检测、虫害检测)的研究进展,特别分析了高光谱成像技术检测粮油品质安全的应用光谱范围、化学计量学方法、仪器设备和模型准确性,指出了现阶段在粮油品质安全检测中存在的主要问题,并对今后的研究方向和重点进行了展望,以期推动高光谱成像技术在粮油领域的应用发展。  相似文献   

12.
13.
为了控制水稻螟虫预警和喷洒农药用量,实现对水稻螟虫虫害的无损检测,提出了基于主成分分析特征波段检测方法和基于迭代阈值的最优波段检测方法,确定了水稻茎秆螟虫检测的特征波段和最优波段,提取出单波段和组合波段的图像来分割虫孔,从而实现水稻螟虫的精准的无损检测。首先通过高光谱得到的120个样品反射率信息分析确定了光谱区域为450~1 000 nm。基于主成分分析特征波段检测方法,对高光谱图像进行主成分分析,通过前五个主成分图像比较确定第三主成分图像为最佳,然后根据第三主成分图像中各个波段的贡献率来选取特征波长(668.8和750 nm),最后结合全局阈值分割和图像掩膜等图像处理方法实现对虫孔区域的判别。而利用基于迭代阈值的最优波段检测方法,在可见光波段450~750 nm范围和近红外波段750~1 000 nm范围内应用混合距离挑选最佳的单波段,通过单波段来确定组合波段,对单波段和组合波段进行迭代阈值分割,其中753.5 nm波长分割效果最好,故确定753.5 nm为最优波长,然后提取该波长的图像采用一种基于迭代阈值虫孔提取方法和形态学处理,最后能对水稻茎秆虫孔区域进行判别来实现水稻茎秆虫害是否存在。对60个虫害水稻茎秆和60个正常水稻茎秆进行检测,应用基于主成分分析特征波段检测方法在668.8和750 nm波长处检测率分别为95.8%和93.3%,而应用基于迭代阈值的最优波长检测方法在753.5 nm波长处检测率高达96.7%。说明利用基于迭代阈值的最优波长检测方法对水稻螟虫的检测更加精确,也说明所获取的特征波段和最优波段为以后水稻螟虫虫害的多光谱成像技术提供了理论参考。  相似文献   

14.
水果新鲜度是反映水果是否新鲜、饱满的重要品质指标,为了探讨水果不同货架期的预测和判别方法,以酥梨为研究对象,利用高光谱成像技术,结合偏最小二乘判别法(PLS-DA)和偏最小二乘支持向量机(LS-SVM)算法对酥梨货架期进行判别。由光源、成像光谱仪、电控位移平台和计算机等构成的高光谱成像装置采集样品光谱,装置光源采用额定功率为200 W四个溴钨灯泡成梯形结构设计,光谱范围为1 000~2 500 nm,分别率为10 nm。选取优质酥梨30个,货架期设置为1, 5和10 d,对30个样品完成3次光谱图像的采集,并矫正原始图像。实验结果表明:基于图像的酥梨货架期定性分析时,对不同货架期样品的原始图像进行PCA压缩,得到三种不同货架期的权重系数数据,PC1图像提取特征波长点为1 280,1 390,1 800,1 880和2 300 nm,以特征图像的平均灰度值作为自变量且以货架期作为因变量建立定性判别模型,建模集68个,预测集22个。最小二乘支持向量机以RBF为核函数时,预测集中样品的误判个数为1,误判率为4.5%。而当采用lin核函数时,样品的误判个数为0,误判率为0。PLS-DA定性分析时RMSEC为1.24,Rc为0.93。RMSEP为1,Rp为0.96,预测集误判率为0。特征图像对酥梨货架期判别LS-SVM中的lin核函数所建立的模型结果较好,优于RBF核函数的建模效果,也优于PLS-DA判别模型。ENVI软件提取实验样品光谱后建立LS-SVM和PLS-DA判别模型,LS-SVM利用RBF和lin核函数误判率分别为4.5%和0。与RBF核函数相比,lin核函数所建立的模型预测酥梨货架期的效果更好。PLS-DA方法主成分因子数为12,RMSEC和RMSEP分别为0.48和0.78,RcRp分别为0.99和0.97,建模集与预测集的误判率均为零。LS-SVM中的lin核函数所建立的模型结果较好,依然优于PLS所建立的检测模型。酥梨的光谱信息结合LS-SVM可以实现对酥梨货架期的检测和判别。基于图像建立酥梨的货架期预测模型与光谱相比,都实现了酥梨货架期的判别,而特征图像法,选择区域较少流失部分信息,计算量小,建模结果相对略差。酥梨货架期的高光谱成像检测模型研究为消费者正确评价水果新鲜度提供了理论指导, 也为后期果水果货架期检测仪器的开发提供了技术支持。  相似文献   

15.
16.
针对高光谱成像特点,提出了一种基于三维特征检测微小摄像头的方案。在空间维利用猫眼效应筛选疑似目标,在光谱维对结果进行精准判定。依据摄像头结构,分析了可见光摄像头的反射光谱特征。基于几何光学和辐射度学,计算和仿真了系统的探测距离。结果表明,正常工作时,光功率影响最小探测距离,目标尺寸影响最大探测距离。搭建了微小摄像头光谱特征验证系统。结果表明,采用吸收型红外截止滤光片的目标的非反射光占比曲线变化平缓且数值高,采用反射型红外截止滤光片的目标的非反射光占比曲线可见光部分数值高,红外部分数值低,从700 nm附近开始下降,甚至发生突变,实验数据显示,突变位置的斜率绝对值是红外波段斜率绝对值的10倍以上。实验结果与预期分析的结果一致,验证了高光谱成像技术检测微小摄像头的可行性。  相似文献   

17.
黄桃碰伤和可溶性固形物高光谱成像无损检测   总被引:1,自引:0,他引:1  
黄桃在线分级时,表面损伤和可溶性固形物同时在线检测。损伤和可溶性固形物是评价黄桃品质好坏的重要指标。采用高光谱成像技术,尝试对黄桃损伤和可溶性固形物进行同时检测。利用主成分分析法,首先对高光谱图像进行主成分分析得到最佳PC(principal component)图像,其次根据PC图像中各波长对其贡献率的大小确定最佳特征波长(550和720 nm)并结合二值化,图像掩膜和阈值分割以及相关的图像处理技术对最佳光谱图像进行定性判别。其准确率最高达到94.6%,同时建立偏最小二乘定量回归模型对正常样品SSC(soluble solid content)含量进行预测,通过对模型的不断优化,实现了基于高光谱成像技术对黄桃碰伤和可溶性固形物同时检测。可溶性固形物分选准确率为79.2%。实验结果表明,利用高光谱成像技术可以实现对黄桃碰伤和可溶性固形物同时检测,该研究可以为实际在线分选提供理论依据和参考。  相似文献   

18.
水果货架期是影响水果品质的重要因素之一,快速无损检测货架期是消费者、食品加工企业日益关心的问题,为了探讨水果不同货架期的预测判别方法的可行性,以不同货架期脐橙为实验样品,运用高光谱成像技术并结合化学计量学方法对不同货架期脐橙进行了预测判别。分别采集脐橙货架期第0天、第7天、14天后的脐橙样本高光谱图像,并进行高光谱图像校正。从光谱角度,提取脐橙样本的平均光谱,每条光谱有176个波长点;从图像角度,先提取脐橙样本的RGB和HSI颜色空间中R,G,B,H,S和I特征值,得到6个分量的均值,然后提取灰度共生矩阵的能量、熵、对比度、逆差矩、相关性的5个图像纹理信息,一共11个图像特征值,并将图像特征进行归一化处理;结合光谱和图像信息,即176个原始光谱和11个图像信息一共187个特征值。利用光谱信息、图像信息、光谱和图像融合信息进行建模,分别建立偏最小二乘支持向量机(LS-SVM)和偏最小二乘判别(PLS-DA)模型。当原始176个光谱变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为5.33%。当11个图像特征变量作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率较高为20%。当原始176个光谱变量和11个图像特征变量的融合特征作为输入变量,核函数为LIN-Kernel时,LS-SVM模型预测效果最佳,预测集误判率为1.33%。实验结果表明,以光谱和图像融合信息建立LS-SVM模型效果最优,提高了对不同货架期脐橙识别的正确率,可实现对不同货架期的脐橙准确有效分类识别,误判率为1.33%。利用高光谱成像技术对不同货架期脐橙进行快速判别,对消费者购买新鲜水果和水果深加工企业具有一定程度的理论指导,也为后期相关仪器研发奠定了基础。  相似文献   

19.
采用近红外高光谱成像技术对菜青虫的存活与死亡状态进行了研究,通过提取菜青虫不同状态的光谱信息,建立判别分析模型。以不同预处理方法对所提取的951.5~1 649.2 nm光谱进行预处理,并建立偏最小二乘判别分析(partial least square-discriminant analysis, PLS-DA)模型对菜青虫的生死状态进行判别分析,判别正确率接近或达到100%。用移动平均(moving average,MA)5点平滑光谱分别采用连续投影算法(successive projections algorithm, SPA)以及加权回归系数(weighted regression coefficient,Bw)分别选取了17和20个特征波长进行生与死状态的判别。基于特征波长建立了PLS-DA, K最邻近节点算法(K-nearest neighbor,KNN),BP神经网络(back propagation neural network,BPNN)以及支持向量机(support vector machine,SVM)模型,判别正确率接近100%。结果表明采用近红外高光谱成像技术对菜青虫生命状态的研究是可行的,为作物虫害的快速诊断提供了新方法。  相似文献   

20.
基于高光谱成像的苹果多品质参数同时检测   总被引:7,自引:0,他引:7  
利用高光谱空间散射曲线的3个洛伦兹拟合参数对苹果的品质(硬度、可溶性固溶物含量)进行同时检测。采用偏最小二乘,逐步多元线性回归和BP神经网络3种方法,对归一化处理和未归一化处理的3个洛伦兹参数组合分别建立苹果品质的预测模型。结果表明:采用偏最小二乘法对未归一化处理参数的组合建立硬度的预测模型其预测结果最好,校正组相关系数Rc=0.93,校正标准差SEC=0.56,验证组相关系数Rv=0.84,验证标准差SEV=0.94。采用偏最小二乘法对归一化处理参数的组合建立可溶性固形物的预测模型其预测结果最好,Rc=0.95,SEC=0.29,Rv=0.83,SEV=0.63。研究结果表明:利用高光谱空间散射曲线的多拟合参数组合可以同时检测苹果的多品质参数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号