首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用一种简单、低成本的方法制备了单分散不同壳层厚度的Au@SiO2核壳纳米粒子.以结晶紫为探针分子,研究了核壳纳米粒子的壳层隔离纳米粒子增强拉曼光谱(SHINERS)效应与二氧化硅壳层厚度之间的关系.结果表明:随着壳层厚度从30nm减小到4nm,粒子之间局域电磁场作用逐渐增加,探针分子的拉曼信号强度大幅度增强.用增强效果最佳的4 nm SiO2壳层厚度的核壳纳米粒子可检测到浓度低达10-5mol/L溶液中的西维因,希望结合便携拉曼仪实现农产品中残留农药西维因的现场检测.  相似文献   

2.
在氨基硅烷化的单晶硅片表面通过静电自组装技术组装上金和金核铂壳两种纳米粒子,通过改变基底浸泡在溶胶中的时间控制基底上纳米粒子的密度。用扫描电子显微镜(SEM)对基底表面上的形貌进行表征,结果表明纳米粒子呈亚单层二维阵列分布。以吡啶(Py)为探针分子,用波长为632.8 nm的激发光作为激发光源,研究纯金和金铂复合基底上的表面增强拉曼光谱(SERS)行为。数据显示在金纳米粒子之间引入金核铂壳纳米粒子后,Py的两个特征峰的频率没有明显变化,但谱峰的强度却变弱了,其SERS信号衰减最大可至原来的24%。这是由于引入的铂的d态电子使金的等离子体激发猝灭,从而破坏了电磁场增强,使金的SERS信号衰减。  相似文献   

3.
借助水/油两相界面自组装形成致密排列且有序稳定的Au@SiO2单层膜,通过膜层层转移到固相基底的方法制备了具有不同纳米粒子层数的SERS基底,成功在同一硅片上制备了六层Au@SiO2纳米粒子膜,研究了不同膜层数与SERS信号的关系,结合SERS成像技术可测定纳米粒子膜在基底上的层数。通过改变探针分子在多层纳米粒子膜上的位置,研究了纳米粒子膜间的耦合增强效应。研究表明,同一层膜表面探针分子的SERS信号分布均匀,随膜层数的增加,SERS信号明显增强,当膜层达到第五层时探针分子的SERS信号最强,之后几乎保持不变,说明SERS信号主要来源于表层的五层纳米粒子膜,位于五层以下纳米粒子对SERS效应并没有贡献。固定探针分子仅吸附于底层纳米粒子表面,当再覆盖一层裸露纳米粒子膜后,SERS信号达到最大,其主要源于热点的增强作用占主导地位,而覆盖至第三层时,SERS信号反而出现微小减弱,这是由于多层的Au@SiO2纳米粒子膜影响了激发光以及信号的传播,但粒子间产生的耦合效应仍对底层的探针分子起增强作用,当覆盖至五层Au@SiO2膜后,探针分子SERS信号完全消失,由此说明纳米粒子单层膜控制在三层以内可有效检测底层及以上所有纳米粒子上吸附分子的SERS信号,该结果为制备理想SERS基底提供了实验依据。  相似文献   

4.
可循环表面增强拉曼光谱基底的制备及其应用   总被引:1,自引:0,他引:1  
以氨基硅烷为偶联剂,硅酸钠为硅源,合成了一种以金为核,二氧化硅为壳的核壳纳米粒子。通过调节硅酸钠的量,反应温度和反应时间控制二氧化硅壳层厚度,获得理想的表面增强效应。通过研究表面增强拉曼光谱(SERS)信号强度和二氧化硅层厚度之间的关系优化基底的制备条件。采用对巯基苯和联吡啶作为探针分子进行SERS实验,在一定浓度范围内得到SERS信号强度和浓度的对数之间的线性关系,实验结果表明此组装有Au@SiO2的ITO基底作为可循环利用基底可定量分析吸附物种的浓度。  相似文献   

5.
采用化学还原法制备了以Au为核、包覆Ag的双金属核壳Au@Ag纳米粒子,并成功地用于表面增强拉曼光谱(SERS)分析测试。通过改变制备液中Ag/Au的量比来调控Ag壳包覆厚度。采用透射电子显微镜(TEM)和紫外-可见光谱仪(UV-Vis)对Au@Ag纳米粒子的构貌进行表征。TEM显示明显存在核壳结构,且Ag壳层随Ag/Au的量比的增加而逐渐变厚;UV-Vis表明随着Ag/Au的量比的增加,Au@Ag纳米粒子出现了Au核与Ag壳吸收峰的2个等离子体共振峰,同时伴随着Au峰的蓝移和Ag峰的红移。以双甲脒为分析物,考察了不同Ag/Au的量比时的Au@Ag纳米粒子的SERS活性。结果表明,SERS活性随Ag/Au的量比的增加先增大后减小,在6∶5时其SERS增强效应最佳,此时Ag壳厚度约为6 nm。以对巯基苯胺(4-ATP)、结晶紫(CV)和双甲脒为分析测试对象,对比了Au@Ag、Ag、Au 3种基底的SERS活性。结果表明,所制备的Au@Ag纳米粒子的SERS活性要明显优于单纯的Au、Ag纳米粒子。  相似文献   

6.
本文介绍了一种制备多功能磁性Fe2O3/Au/Ag纳米粒子的简捷方法, 制备的粒子直径大约在100 nm左右, 采用UV-vis和SEM对该结构进行了表征。并通过调节硝酸银的用量, 制备了一系列具有不同壳层厚度和表面结构的多重核壳纳米粒子。以苯硫酚(TP)为探针分子, 研究了不同银壳厚度的磁性纳米粒子的表面增强拉曼散射(SERS)活性。结果表明随Ag:Au比例的不断增加, 其SERS活性呈现先增大后减小的趋势, 这与表面结构的改变有关。  相似文献   

7.
王超男  方靖淮 《光谱实验室》2011,28(4):1869-1872
采用共沉淀法制备了Fe3O4纳米颗粒,并以其为晶种利用晶种生长法制备了Fe3O4@Au磁性复合纳米粒子。吸收光谱显示Au壳层成功包覆在了Fe3O4纳米核的表面。以结晶紫为探针分子的表面增强拉曼散射(SERS)光谱展示了Fe3O4@Au良好的SERS活性。  相似文献   

8.
自组装银纳米粒子及其SERS增强效应   总被引:2,自引:2,他引:0  
采用柠檬酸三钠还原硝酸银方法制备出银纳米粒子, 并通过在玻璃表面修饰3-氨基丙基-三乙氧基硅烷( APTES)对银纳米粒子进行自组装。利用紫外-可见(UV-Vis)吸收光谱和扫描电子显微镜(SEM)测试手段对样品进行分析和表征。由测试结果可知银纳米粒子的尺寸比较均匀, 组装致密度较高, 基本以亚单层的形式分布于基底表面。进一步研究了以结晶紫(CV)为探针分子的自组装基底的表面增强拉曼光谱(SERS), 计算发现该基底的拉曼增强因子数量级达106。结果表明: 银纳米粒子自组装基底具有良好的SERS增强效应, 为痕量CV的检测提供了有效的方法。  相似文献   

9.
本文提出了一种快速简单制备的双共振基底用于SERS检测,该多层结构的纳米粒子间的区域表面等离子体以及光栅与介质间激发的表面等离子体极化激元产生耦合,导致了区域电磁场的提高,实现了SERS的增强。实验表明双共振基底的SERS强度可达到Au纳米粒子单共振SERS基底的10倍,说明了双共振SERS基底具有很高的灵敏性。RSD结果表明双共振基底也具有非常好的重现性。  相似文献   

10.
表面增强拉曼散射光谱(SERS)已用于环境监测、生物医药、食品卫生等领域,而高活性SERS基底是表面增强拉曼散射光谱技术应用的关键。TiN作为新型等离子材料具有较强的SERS性能,同时化学稳定性及生物相容性较好,但其SERS性能不如贵金属金强。该研究采用氨气还原氮化法和电化学沉积法,在TiN薄膜表面沉积贵金属Au纳米颗粒制备出Au/TiN复合薄膜。在Au/TiN复合薄膜中单质Au和TiN两种物相共存;随着电化学沉积时间延长,TiN薄膜表面单质金纳米颗粒数量逐渐增多,金纳米颗粒尺寸增大,颗粒间距减小。由于金与TiN两者的本征表面等离子共振耦合作用,Au/TiN复合薄膜的共振吸收峰发生了偏移。利用罗丹明6G为拉曼探针分子,对Au/TiN复合薄膜进行SERS性能分析,发现Au/TiN复合薄膜上的R6G探针分子的拉曼峰信号强度随沉积时间延长呈现先增大后减小的规律;当电化学沉积时间为5 min时,R6G拉曼信号峰较高,复合薄膜样品的SERS活性最大。将Au/TiN复合薄膜和Au薄膜分别浸泡在10-3,10-5,10-7,10-8及10-9 mol·L-1 R6G溶液5 min,进行检测限分析,发现Au/TiN复合薄膜检测极限达10-8 mol·L-1,增强因子达到8.82×105,与Au薄膜和TiN薄膜相比,Au/TiN复合薄膜上对R6G探针分子SERS活性最高。这得益于Au/TiN复合膜中表面等离子体产生的耦合效应,使得局域电磁场强度增强,从而引起R6G探针分子拉曼信号增强。通过2D-FDTD模拟电场分布发现Au/TiN,Au及TiN薄膜具有电场增强作用,其中Au/TiN复合薄膜的增强作用尤为显著,这也证实了氮化钛与金纳米颗粒之间存在耦合效应。另外发现TiN与Au之间可能存在电荷转移,促进了4-氨基苯硫酚氧化反应,进而证实了TiN与Au薄膜的协同作用。此外,Au/TiN复合薄膜均匀性较好,相对平均偏差仅为7.58%。由此可见,采用电化学沉积制备的Au/TiN复合薄膜具有作为SERS基底材料的应用潜力。  相似文献   

11.
挥发性有机物在自然环境中普遍存在,对人体健康造成显著影响,为此亟待发展高灵敏度的快速识别和检测技术。本文通过制备和优化表面增强拉曼散射(surface-enhanced Raman scattering,SERS)基底,实现了强吸附和弱吸附型挥发性有机物的检测。首先利用化学方法合成了粒径约为30nm的均匀准球形金纳米粒子,该粒子具有SERS效应以及良好的化学稳定性,以该纳米粒子为单元,通过气液两相界面自组装技术制备增强性能好、SERS信号均匀的金纳米粒子单层膜(Au MLF),并以此为SERS基底对挥发性有机物苯硫酚进行了检测。为了实现弱吸附挥发物质的检测,对Au MLF表面进行了修饰,构建了聚二甲基硅氧烷(PDMS)-Au MLF复合基底,实现了苯及二甲苯等弱吸附型挥发性有机物的检测。  相似文献   

12.
以多孔阳极氧化铝(porous anodic alumina,PAA)膜为模板,采用真空电子束蒸镀技术,分别在PAA多孔层以及阻挡层表面形成了银纳米孔和银纳米帽有序阵列表面增强拉曼散射(surface-enhancedRaman scattering,SERS)活性基底,并以膀胱肿瘤细胞作为分子探针,测试和分析了这两种SERS活性基底的表面增强拉曼光谱的特性。结果表明,两种SERS活性基底对膀胱肿瘤细胞的拉曼散射信号均有很好的增强作用。银纳米帽有序阵列SERS活性基底不仅具有较高的SERS增强和荧光猝灭效应,而且不存在与PAA膜中草酸根杂质相关的干扰峰,可获得膀胱肿瘤细胞拉曼散射光谱的更多细节信息。  相似文献   

13.
为了进一步来提高SERS基底和分子的普适性,本文采取了一种"借力"的方法,设计合成了金核过渡金属薄壳(Au@Pd,Au@Pt,Au@Ni,Au@Co)的核壳结构纳米粒子,借用底层高SERS活性的金核强的电磁场来增强过渡金属表面吸附分子的SERS信号,使得过渡金属表面的增强因子可达104-105。系统地开展了不同壳层厚度及相同壳层厚度下金核大小对SERS活性影响的研究,发现随着壳层厚的增加SERS活性迅速衰减,而且当金核为120-140 nm时可以得到最强的增强。  相似文献   

14.
表面等离激元催化反应为表面过程的拓展提供了一条新的途径,但在单一贵金属表面的反应效率往往较低,因此发展符合纳米结构已经成为该领域的研究热点。通过合成八面体的氧化亚铜(Cu2O),并引入高均匀性和高SERS活性的金纳米粒子单层膜(Au MLF),将两者完全结合,构建了Cu2O-Au复合异质结SERS基底。以对硝基苯硫酚(PNTP)为探针,通过表面增强拉曼光谱(SERS)研究了Cu2O-Au表面等离激元驱动的偶联反应。结果表明,Cu2O与Au MLF的复合,其SERS性能及催化活性都得到了较大的提升,为发展高性能的新型复合纳米结构提供了实验基础。  相似文献   

15.
给出了3.3′二乙基硫醛三碳菁化碘(DTTC)分子的自然拉曼光谱、表面增强拉曼光谱(SERS)、以及理论计算拉曼光谱。SERS谱的增强基底是直径60 nm的金球和50 nm长的金棒,外包附一层硫基聚乙二醇(thiol-polyethylene glycol,简称Mpeg-SH)做为稳定层。同时,采用密度泛函(DFT)方法计算了DTTC分子的拉曼光谱,计算基于B3LYP/6-31G基组。经过仔细对比,计算光谱和两种实测光谱特征峰位有很好的一致性。对于不一致的部分,分析原因可能是由于金纳米粒子表面等离子体波对于不同的峰位,其增强程度不同所引起的。这项工作将有利于基于DTTC分子的红外波段拉曼光谱技术在生化领域的应用。  相似文献   

16.
调节纳米颗粒相邻间距和排列方式,可以得到宏观有序纳米结构,其具有新的光、电性质,可作为研究亲脂性分子的表面增强拉曼光谱(SERS)基底。首先制备了直径为16 nm的金纳米粒子,通过界面自组装方法制得金纳米粒子膜,并利用扫描电镜、紫外-可见吸收光谱仪等对其进行了表征,结果表明其有两种膜结构,一种是均匀分布的单层膜,另一种是多层膜结构,它们的吸收峰在590 nm处。将其作为SERS基底,研究了相同条件下苏丹红Ⅰ分子在不同膜结构的谱学变化,发现单层和多层膜上苏丹红Ⅰ的SERS信号有明显差异。最后,初步探究了苏丹红Ⅰ分子随浸泡时间的吸附动力学。  相似文献   

17.
银纳米粒子阵列的自组装及其表面增强拉曼光谱应用   总被引:5,自引:0,他引:5  
在以聚赖氨酸为表面耦联层分子的玻片基底制备了银纳米粒子阵列。SEM表征结果表明,银粒子以亚单层的形式排列在基底表面。比较银溶胶和纳米粒子阵列的紫外可见光谱可见聚赖氨酸耦联层对银纳米粒子的粒径具有一定的选择性,甲基紫精在银纳米粒子阵列上的表面增强FT拉曼光谱表明在近红外区拉曼散射的表面增强主要来自于化学增强效应。  相似文献   

18.
宿健  张谷令  彭洪尚 《发光学报》2018,39(9):1323-1329
提出一种新型的荧光及表面增强拉曼散射(SERS)双模式光学纳米探针。首先,通过再沉淀-包覆法合成二氧化硅包覆香豆素6的纳米颗粒,再在二氧化硅表面静电吸附多聚赖氨酸分子形成包覆层,随后通过原位还原的方法在多聚赖氨酸壳层复合银纳米颗粒,最后在银纳米颗粒表面吸附拉曼分子即形成双模式纳米探针。该探针通过二氧化硅包覆的荧光分子产生荧光信号,以多聚赖氨酸表面的银纳米颗粒作为SERS增强基底,利用拉曼分子获得SERS信号,实现了荧光及SERS双模式成像。荧光与表面增强拉曼散射相结合的双模式分析技术可同时发挥二者的优点,提高成像的分辨率和灵敏度,在生物医学领域具有重要的应用价值。  相似文献   

19.
王向贤  白雪琳  庞志远  杨华  祁云平  温晓镭 《物理学报》2019,68(3):37301-037301
金属纳米颗粒与金属薄膜的复合结构由于其局域表面等离子体和传播表面等离子体间的强共振耦合作用,可作为表面增强拉曼散射(SERS)基底,显著增强吸附分子的拉曼信号.本文提出了一种聚甲基丙烯酸甲酯(PMMA)间隔的90 nm金纳米立方体与50 nm金膜复合结构的SERS基底,通过有限元方法数值模拟,得到PMMA的最优化厚度为15 nm.实验制备了PMMA间隔层厚度为14 nm的复合结构,利用罗丹明6G (R6G)为拉曼探针分子, 633 nm的氦氖激光器作为激发光源,研究了复合结构和单一金纳米立方体的SERS效应,发现复合结构可以使探针分子产生比单一结构更强的拉曼信号.在此基础上,研究了不同浓度金纳米立方体水溶液条件下复合结构中R6G的拉曼光谱.结果表明,当金纳米立方体水溶液浓度为5.625μg/mL的条件下复合结构中R6G的拉曼信号最强,且可测量R6G的最低浓度达10~(–11) mol/L.  相似文献   

20.
表面增强拉曼光谱技术因其高灵敏度、操作简单、快速检测等优点,被广泛用于病毒检测方面。国内外的病毒拉曼检测研究主要集中在检测病毒核酸以及组成核酸的各种碱基的表面增强拉曼光谱(SERS),但少见对病毒蛋白的SERS检测。以新型冠状病毒(SARS-CoV-2)的S蛋白为检测对象,采用无标记SERS检测方法,对比SARS-CoV-2固态、饱和液态S蛋白的普通拉曼光谱和选用40 nm金纳米粒子为基底的SARS-CoV-2低浓度S蛋白SERS光谱。结果表明,以40 nm金纳米粒子为基底,采用SERS技术检测SARS-CoV-2的S蛋白是完全可行的。SARS-CoV-2的S蛋白分子中的羧基与金纳米粒子发生了分子增强,氨基与金纳米粒子发生了电磁增强,从而使得SARS-CoV-2的S蛋白拉曼效应得到了增强,并使得峰位发生一定移动。实验获得了较好的SARS-CoV-2低浓度S蛋白SERS光谱,为建立敏感、特异、快速的SARS-CoV-2检测新技术提供了一种方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号