首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
水是生命之源,人们日常生产生活离不开水。近年来水体污染日趋严重,已经危害到人类的健康。酚类化合物(Phenolic Compound)是一种广泛存在且很难降解的有机污染物,指的是芳香烃中苯环上的氢原子被羟基取代所生成的含羟基衍生物,毒性很强,对动植物及人类的生命活动有严重危害。实验研究对象选取间苯二酚(resorcinol,RES)和对苯二酚(hydroquinone,HYD)来配制待测样本,并且在其中3组预测样本中加入苯酚(phenol,PHE)作为干扰物,待测样本和空白溶剂分别用FS920稳态荧光光谱仪(edinburgh instruments,EI)扫描得到荧光光谱数据。对所得到的数据通过扣除空白溶剂法来消除拉曼散射的影响,得到的数据在消除干扰的同时最大程度保留下来原光谱所包含的重要信息。校正后光谱变得更加圆滑,荧光强度显著增强,因此,校正处理后的光谱信息更为准确。利用三维荧光光谱(EEM)结合平行因子分析(PARAFAC)和交替惩罚三线性分解(APTLD)两种二阶校正方法,分别完成在不含干扰物和含有干扰物、同时激发-发射光谱严重重叠时对间苯二酚、对苯二酚的快速、直接、准确测量,并给出定性、定量分析结果。PARAFAC算法对混合体系的组分数(即化学秩)较敏感,组分数选取过大易使其陷入计算"沼泽",迭代次数增多,计算耗时变长。故本文利用核一致诊断法(CORCONDIA)预估计出准确的组分数,保证PARAFAC算法更加快速准确。从定性分析结果知,当不含有干扰物时,PARAFAC能够准确分辨出间苯二酚和对苯二酚,二者荧光峰位置极为接近,很难用传统方法分辨,体现出将三维荧光光谱技术与化学计量学二阶校正方法相结合所具有的"二阶优势";定量分析结果给出,在有干扰物共存时,分别应用两种二阶校正法解析光谱数据结果显示:PARAFAC的浓度预测回收率为93.4%±0.5%~97.1%±1.0%,预测均方根误差小于0.190 mg·L^-1;APTLD的浓度预测回收率为95.9%±1.6%~97.2%±0.8%,预测均方根误差小于0.116 mg·L^-1,通过比较两种方法性能得:PARAFAC对待测物组分数敏感,对待分解的光谱数据严格线性要求高;而APTLD对混合物组分数不敏感,计算速度快,抗噪声能力较强,结果稳定,具有较明显的优势。  相似文献   

2.
应用英国Edinburgh公司生产的FLS920P荧光光谱仪实验测定了诱惑红、日落黄和亮蓝三种合成食品色素混合溶液的三维荧光光谱,将荧光光谱数据应用化学计量学中的平行因子分析(PARAFAC)和交替三线性分解(ATLD)二阶校正算法进行计算处理,对混合合成食品色素溶液中各组分进行了定性和定量检测。应用核一致诊断法,确定主成分数为3。PARAFAC算法解析后的回收率分别为98.75%±8.9%,97.22%±2.9%和99.00%±2.9%,ATLD算法解析后的回收率分别为99.78%±5.9%,92.52%±5.5%和97.23%±5.8%。结果表明,两种方法都可以用于三个组分的直接快速测定,PARAFAC算法更稳定,更具优势。  相似文献   

3.
应用英国Edinburgh公司生产的FLS920P荧光光谱仪实验测定了诱惑红、日落黄和亮蓝三种合成食品色素混合溶液的三维荧光光谱,将荧光光谱数据应用化学计量学中的平行因子分析(PARAFAC)和交替三线性分解(ATLD)二阶校正算法进行计算处理,对混合合成食品色素溶液中各组分进行了定性和定量检测。应用核一致诊断法,确定主成分数为3。PARAFAC算法解析后的回收率分别为98.75%±8.9%,97.22%±2.9%和99.00%±2.9%,ATLD算法解析后的回收率分别为99.78%±5.9%,92.52%±5.5%和97.23%±5.8%。结果表明,两种方法都可以用于三个组分的直接快速测定,PARAFAC算法更稳定,更具优势。  相似文献   

4.
针对油类污染物成分复杂,光谱重叠难以识别的问题,提出采用三维荧光光谱结合组合算法对油类污染物进行了定性和定量分析。荧光光谱中存在的瑞利散射对三维荧光光谱检测有较大影响,提出了缺损数据修复-主成分分析(MDR-PCA)方法对矿物油三维荧光光谱的瑞利散射进行处理,原理是单个荧光光谱激发发射矩阵符合双线性,可用主成分分析(PCA)法来解析。MDR-PCA法首先将荧光数据中的散射干扰数据全部扣除,之后利用主成分分析(PCA)迭代过程对扣除数据进行重构修复后补全数据。该方法在消除散射干扰的同时充分利用了荧光物质光谱矩阵中的有效信息。利用不同浓度的矿物油的激发-发射荧光光谱构建了三维数据。样品数据来源于柴油、汽油和煤油三种溶质的四氯化碳溶液。常用于三维荧光光谱数据分析的三线性分解算法有平行因子分析(PARAFAC)、交替三线性分解(ATLD)和自加权交替三线性分解算法(SWATLD)等。PARAFAC基于严格意义上的最小二乘原则,具有抗噪声强、模型稳定、微小预期误差等优点,可以实现三维数据阵列的最佳拟合,但该算法收敛速度较慢,对组分数敏感。ATLD算法通过提取对角主元和切尾奇异值求解广义逆,极大提高了收敛速度并降低了对组分数的敏感度,从而实现三线性分解。然而,取对角元时易使ATLD方法对噪声敏感。SWATLD算法既继承了对组分数不敏感、收敛速度快等优点,又降低了噪声水平的影响。但是在抗共线程度方面, SWATLD算法在抵抗共线性程度方面的能力较ATLD略有降低。基于此,论文根据三线性分解算法迭代过程中损失函数的变化,对迭代过程进行划分,提出了三线性迭代方法的组合算法(algorithm combination methodology, ACM)—将ATLD, SWATLD与PARAFAC组合在一起,充分发挥各算法的优点,实现二阶校正算法的优势互补。采用ACM算法对两组分及三组分矿物油样品的三维荧光光谱数据进行解析,并对三种矿物油的回收率进行了计算。柴油的回收率为97.08%,汽油的回收率为97.34%,煤油的回收率为97.25%。解析光谱和回收率表明, ACM算法能够实现油类污染物的种类识别及浓度测量。  相似文献   

5.
针对油类污染物成分复杂,光谱重叠难以识别的问题,提出采用三维荧光光谱结合组合算法对油类污染物进行了定性和定量分析。荧光光谱中存在的瑞利散射对三维荧光光谱检测有较大影响,提出了缺损数据修复-主成分分析(MDR-PCA)方法对矿物油三维荧光光谱的瑞利散射进行处理,原理是单个荧光光谱激发发射矩阵符合双线性,可用主成分分析(PCA)法来解析。MDR-PCA法首先将荧光数据中的散射干扰数据全部扣除,之后利用主成分分析(PCA)迭代过程对扣除数据进行重构修复后补全数据。该方法在消除散射干扰的同时充分利用了荧光物质光谱矩阵中的有效信息。利用不同浓度的矿物油的激发-发射荧光光谱构建了三维数据。样品数据来源于柴油、汽油和煤油三种溶质的四氯化碳溶液。常用于三维荧光光谱数据分析的三线性分解算法有平行因子分析(PARAFAC)、交替三线性分解(ATLD)和自加权交替三线性分解算法(SWATLD)等。PARAFAC基于严格意义上的最小二乘原则,具有抗噪声强、模型稳定、微小预期误差等优点,可以实现三维数据阵列的最佳拟合,但该算法收敛速度较慢,对组分数敏感。ATLD算法通过提取对角主元和切尾奇异值求解广义逆,极大提高了收敛速度并降低了对组分数的敏感度,从而实现三线性分解。然而,取对角元时易使ATLD方法对噪声敏感。SWATLD算法既继承了对组分数不敏感、收敛速度快等优点,又降低了噪声水平的影响。但是在抗共线程度方面,SWATLD算法在抵抗共线性程度方面的能力较ATLD略有降低。基于此,论文根据三线性分解算法迭代过程中损失函数的变化,对迭代过程进行划分,提出了三线性迭代方法的组合算法(algorithm combination methodology, ACM)—将ATLD, SWATLD与PARAFAC组合在一起,充分发挥各算法的优点,实现二阶校正算法的优势互补。采用ACM算法对两组分及三组分矿物油样品的三维荧光光谱数据进行解析,并对三种矿物油的回收率进行了计算。柴油的回收率为97.08%,汽油的回收率为97.34%,煤油的回收率为97.25%。解析光谱和回收率表明,ACM算法能够实现油类污染物的种类识别及浓度测量。  相似文献   

6.
多环芳烃(PAHs)类物质具有致畸、致癌、致突变的性质,严重污染生态环境,进而对人类的健康及动植物生长造成威胁。PAHs通过排污、大气沉降、地表径流等各种循环途径进入水环境中,由于种类众多且化学性质相似,常规的检测方法如化学滴定法、电化学法等很难实现快速准确的测定。为实现复杂体系中PAHs的定性与定量,工作中基于三维荧光光谱分析法,结合集合经验模态分解(EEMD)去噪与自加权交替三线性分解(SWATLD)二阶校正,对超纯水以及池塘水环境中的苊(ANA)和萘(NAP)进行分析测定。首先选择合理的浓度配制样本,用FS920荧光光谱仪测得样品的三维荧光光谱,利用空白扣除法将光谱数据中的散射消除,得到真实的光谱数据。然后对去除散射的数据进行EEMD降噪处理,该方法具有自适应性强、参数设置简便的优点,能够去除嘈杂信息,提高数据信噪比,并将去噪参数与快速傅里叶变换、小波滤波和经验模态分解进行比较。最后用SWATLD算法以“数学分离”代替“化学分离”,对超纯水和池塘水环境中光谱重叠的ANA和NAP进行定性识别和定量预测,该算法对组分数的选择不敏感,能够在未知干扰物共存情况下实现多组分目标分析物的同时检测,即具有“二阶优势”,并将预测结果与平行因子分析进行比较。结果表明空白扣除法能够成功将拉曼散射消除。EEMD降噪方法使ANA和NAP的光谱更加规整平滑,有效信息更加突出,该方法去噪后数据信噪比为16.845 2,均方根误差为11.136 6,波形相似系数为0.990 9,三项指标均优于快速傅里叶变换和经验模态分解等其他去噪方法,能达到小波滤波的去噪效果并且不用设置先验参数。利用SWATLD二阶校正方法得到验证样本中ANA与NAP的分解光谱与实际光谱基本吻合,平均预测回收率分别为96.4%和104.2%,预测均方根误差分别为0.105和0.092 μg·L-1;在存在未知干扰物的池塘水样本中,分解出的光谱依然能与实际光谱吻合,ANA与NAP两者的平均预测回收率分别为94.8%和105.5%,预测均方根误差分别为0.067和0.169 μg·L-1;与平行因子分析相比,两项指标均具有优势。  相似文献   

7.
三维荧光光谱分析法以其灵敏度高、选择性好、操作简单和可用于多组分混合物分析等优点成为诸多研究者在海面溢油鉴别中的热点选择。但三维荧光光谱中存在的瑞利散射会对光谱的准确检测产生较大的影响,因此有效地消除瑞利散射对后续光谱的定性鉴别和定量分析具有重要意义。采用仪器校正法、空白扣除法、 Delaunay三角形内插值法和缺损数据重构(MDR)法对海面溢油三维荧光光谱中的瑞利散射进行校正。首先以海水的SDS胶束溶液作为溶剂,将航空煤油和润滑油按不同相对体积分数比配制8个校正样本和3个测试样本;然后利用FS920稳态荧光光谱仪采集11个样本的三维荧光光谱数据,并分别采用仪器校正法、空白扣除法、 Delaunay三角形内插值法和缺损数据重构(MDR)法消除瑞利散射的干扰;再利用核一致诊断法估计出最佳的组分数;最后利用平行因子分析(PARAFAC)对混合油样本的三维荧光光谱数据进行定性鉴别和定量分析。研究结果表明:采用发射波长滞后激发波长以消除瑞利散射的仪器校正法会丢失部分有效光谱信息;采用空白扣除法无法彻底消除瑞利散射,在光谱中仍然存在散射干扰,利用PARAFAC解析后得到的激发、发射光谱会出现失真,且预测的浓度值偏差较大;采用Delaunay三角形内插值法消除瑞利散射后,利用PARAFAC解析所得到的激发、发射光谱与真实光谱吻合度较高,且预测的浓度值偏差较小;而采用MDR消除瑞利散射后,利用PARAFAC解析所获得的激发、发射光谱与真实光谱吻合度最高,且相较于其他几种方法预测的浓度值偏差最小,得到的样本回收率为98.9%和100%,预测均方根误差均小于等于0.130。根据定性鉴别、定量分析的结果, MDR能够在保证原有特征光谱不失真的基础上有效消除瑞利散射带来的影响,是一种消除三维荧光光谱数据中瑞利散射较为理想的方法。  相似文献   

8.
酚类化合物对动植物机理有着严重危害,利用三维荧光光谱结合交替惩罚三线性分解(APTLD)算法,完成了不含干扰物和干扰物共存时激发-发射荧光光谱重叠严重的麝香草酚、对苯二酚和苯酚的直接快速准确定性、定量分析。研究了温度对三种酚类化合物荧光强度的影响。对扫描所得激发-发射矩阵信号(EEM)进行二次去散射和光谱校正预处理,最大程度保留了原光谱信息,避免光谱严重失真。将APTLD算法与平行因子(PARAFAC)和交替三线性分解(ATLD)算法进行对比,突显该算法的优势。实验得出,APTLD算法能够较好的解析荧光光谱数据的重叠峰,分别得到三种目标分析物的荧光光谱,实现快速定性分析;定量分析时平均回收率为(97.4±4.5)%~(103.1±3.0)%;预测均方根误差(RMSEP)低于1.664×10-2 μg·mL-1,且检测限低于国家标准;处理过程简洁快速,为水环境中酚类化合物实现现场检测和在线实时监测提供了有力依据。  相似文献   

9.
基于三维荧光光谱结合小波压缩与交替惩罚三线性分解(APTLD)对水中多环芳烃(PAHs)进行定性和定量分析,实验以萘(NAP)、芴(FLU)、苊(ANA)为测量样品。首先用FS920荧光光谱仪测量获得样品的三维荧光光谱数据,对数据进行激发和发射校正且去散射,得到真实光谱。为了解决三维荧光光谱数据的冗余信息,通过小波变换对实验光谱数据进行压缩,其压缩分数和数据恢复分数分别大于92%和95%。用APTLD对压缩后的光谱数据进行分析,体现了二阶优势,实验结果表明,在PAHs的荧光光谱严重重叠和有干扰物共存下,该方法仍能准确地测定,其回收率为94%~98%、预测均方根误差小于0.29 μg·L-1。  相似文献   

10.
三维荧光光谱技术与自加权交替三线性分解(SWATLD)算法相结合,对三类农药混合溶液进行检测。在乙腈溶剂中配制西维因、速灭威和三唑磷不同浓度比的混合溶液为测量样品(西维因、速灭威及三唑磷的最佳激发波长/发射波长分别为285/325,305/345和265/305 nm),利用荧光光谱仪获取样品的三维荧光光谱,经过空白扣除以及激发与发射校正,有效地去除仪器误差以及散射产生的影响,得到样品的真实光谱。采用基于自加权交替三线性分解算法对测得的光谱数据进行分析,得到的三种农药的平均回收率为96.9%±1.9%,99.8%±1.0%和100.8%±3.2%。根据SWATLD算法预测结果,计算三类农药的预测均方根误差(RMSEP)值为0.616×10-2,0.539×10-2和0.374×10-2 μg·mL-1,低于平行因子(PARAFAC)分析法预测结果的RMSEP值,且最低检测限均在0.005~0.022 μg·mL-1范围内。和PARAFAC算法相比较,突出了SWATLD算法的优势,表明该算法对光谱重叠严重的三类农药混合物有较好的分解能力。  相似文献   

11.
三维荧光光谱法在研究多环芳烃(PAHs)类物质的荧光信息时起到了重要作用。多环芳烃类物质具有致癌性,难降解性,多由尾气排放,垃圾焚烧产生,危害着人类健康及环境,因此人们不断探索对多环芳烃检测的方法。实验选取多环芳烃中的苊和萘作为检测物质,利用FLS920荧光光谱仪,为避免荧光光谱仪本身产生的瑞利散射影响,设置起始的发射波长滞后激发波长40 nm,设置扫描的激发波长(λex)范围为:200~370 nm,发射波长(λem)范围为:240~390 nm,对多环芳烃进行荧光扫描获取荧光数据,采用三维荧光光谱技术结合平行因子算法对混合溶液中的苊和萘进行定性定量分析。实验选用的苊和萘均购于阿拉丁试剂官网,配制浓度为10 mg·L-1的一级储备液,再将一级储备液稀释,得到苊和萘浓度为0.5,1,1.5,2,2.5,3,3.5,4和4.5 mg·L-1的二级储备液,并将苊和萘进行混合。在进行光谱分析前需要对苊和萘的光谱进行预处理,采用空白扣除法扣除拉曼散射的影响,并采用集合经验模态分解(EEMD)消除干扰噪声。实验测得苊存在两个波峰,位于λex=298 nm,λem=324/338 nm处,萘存在一个波峰,位于λex=280 nm,λem=322 nm处。选用的PARAFAC算法对组分数的的选择很敏感,因此采用核一致诊断法预估组分数,估计值2和3的核一致值都在60%以上,分别对混合样品进行了2因子和3因子的PARAFAC分解,将分解后得到的激发发射光谱数据和各组分浓度数据进行归一化处理,并绘制光谱图,与归一化处理后的真实的激发发射光谱图和各组分浓度图进行对比。同时将PARAFAC得到的混合样本的预测浓度,通过计算回收率(R)和均方根误差(RMSEP)来判定定量分析的准确度。选择2因子时,各混合样品中苊和萘拟合度为95.7%和96.7%,平均回收率分别为101.8%和98.9%,均方根误差分别为0.0187和0.0316;选择3因子时,各混合样品中苊和萘拟合度为95.3%和95.8%,平均回收率分别为97%和102.5%,均方根误差分别为0.033和0.116,由三项指标可得选用2因子进行定性定量分析的效果明显好于选用3因子。分析实验结果表明,基于三维荧光光谱法和PARAFAC算法对混合样品进行定性定量分析,能够有效的判定混合样品的类别,同时能够成功的预测出混合样品的浓度。  相似文献   

12.
In this paper, UV–vis spectroscopy and fluorescence were combined to study the binding of Calf thymus DNA (ct-DNA) with the anthacycline antibiotic drug pirarubicin (THP). Ethidium bromide (EB) as the fluorescence probe was used to study the competitive binding interactions of THP with DNA by excitation -emission fluorescence matrices (EEFMs) coupled with the parallel factor analysis (PARAFAC) and the alternating normalization-weighted error algorithm (ANWE) with the second-order advantage. All the results conformed that THP mainly bound with DNA by intercalation. Meanwhile, the two second-order calibration methods have been successfully applied to quantify THP in urine samples. Figures of merit were applied to compare the performance of the two methods. The results presented in this work showed that both the PARAFAC and ANWE methods were the convincing way to be applied in the complex biological systems even in the presence of uncalibrated interferences.  相似文献   

13.
利用三维荧光光谱结合交替归一加权残差算法(ANWE),对碳酸饮料中胭脂红含量的直接测定。首先通过使用英国爱丁堡公司生产的FLS920P荧光光谱仪测量所配制的胭脂红和日落黄混合溶液样品的三维荧光光谱,利用ANWE算法来进行解析,得到校正集中浓度与真实浓度的相关系数为0.9917,平均回收率为100.92%±2.71%,结果表明,ANWE算法可靠性比较好;然后把市售碳酸饮料稀释8,9,12,13倍,分别测量它们的三维荧光光谱,结合ANWE算法进行解析,计算得到校正集中浓度和实际浓度的相关系数分别为0.993 0,0.993 0,0.993 2,0.993 2,以及饮料中胭脂红含量分别为38.88,37.71,37.68和39.65 μg·mL-1,平均浓度为(38.48±0.96) μg·mL-1;最后,为了验证所得饮料中胭脂红浓度的准确性,使用标准添加法,解析得到,校正样品中胭脂红的校正浓度和真实浓度相关系数为0.993 5,且平均回收率为102.99%±2.15%。检测结果可为饮料中食品色素的快速定量提供一种新的思路。  相似文献   

14.
本文应用人工神经网络原理,以Levenberg-Marquardt BP算法对荧光光谱严重重叠的苯酚、间苯二酚的混合体系进行同时测定,在290-345nm的范围内,以14个特征波长处的荧光强度值作为网络特征参数,并通过均匀设计安排样本进行网络训练和计算,网络训练8次即达到误差精度要求(误差平方和小于0.01)。苯酚、间苯二酚的平均回收率分别为100.2%,99.99%,相对标准偏差分别为0.4%,1.3%。  相似文献   

15.
邻苯二酚和对苯二酚是有毒物质,酪氨酸和色氨酸是天然氨基酸中仅有的会发光的组分,由于四组分光谱重叠,很难用常规方法直接定量检测。实验中采用三维荧光光谱结合平行因子和自加权交替三线性分解算法,邻苯二酚、对苯二酚、酪氨酸和色氨酸进行直接定量测定;同时,比较两种算法在定性测定和定量测定上的差别。当测量体系的成分数预估计值为4时,两种方法分辨后的回收率分别为(101.2±2.7)%,(99.3±3.0)%,(98.7±4.5)%,(101.6±4.7)%和(109.0±8.0)%,(91.3±11)%,(99.7±13)%,(98.1±11)%。试验结果表明,两种方法可用于四组分直接快速定量测定;通过对两种算法的比较,PARAFAC算法更具优势。  相似文献   

16.
基于温度变量的四维荧光光谱的石油类污染物测定   总被引:1,自引:0,他引:1  
三维荧光光谱结合多元校正分析对石油类污染物复杂多组分体系测定方法多谱图混叠,且易受到空白荧光和干扰物荧光影响降低了测定准确性。提出在三维荧光光谱中增加一维温度信息构造激发波长-发射波长-温度-样品(EEM-temperature data array)的四维荧光光谱数据阵列,应用四线性成分模型建立高维荧光光谱定性定量分析的方法。实验证明在15~25 ℃温度范围内,矿物油荧光光谱轮廓形状不随温度变化,而其强度随温度线性变化,满足四线性要求,这为构建四维荧光光谱发展高维数据的三阶校正提取更丰富的有效信息提供了可能。三阶校正不仅可以在干扰物共存的情况下对感兴趣组份进行定量测定,即具有“二阶优势”,还具有更高的选择性和灵敏性,可以对高共线性和背景干扰的重叠光谱表现更好的解析能力,即“三阶优势”。对0#柴油、97#汽油和机油为混合油待测组分,腐殖酸为水体干扰组分组成的复杂体系污染油样品为进行实验,得到的三维荧光光谱利用平行因子(PARAFAC)算法和交替惩罚三线性分解(APTLD)算法进行二阶校正分析,将三维荧光光谱在温度方向上堆叠构成增加温度维度的四维荧光光谱数阵,并将其利用四维平行因子算法(4-PARAFAC)和交替惩罚四线性分解(APQLD)算法进行三阶校正分析,比较,0#柴油、97#汽油和机油的预测结果表明增加了影响荧光光谱的温度因素构造的四维荧光光谱提高了有效信息提取能力,四维荧光光谱结合高阶校正算法能提高油种光谱识别和浓度精确检测,较传统的三维荧光光谱分析提高了回收率(recovery rate)和预测均方根误差(root mean square error of prediction,RMSEP),有利于石油类污染物的有效,准确,实时,绿色环保检测。同时指出了4-PARAFAC和APQLD算法各自的特点及其不同适用环境,为油类污染物检测具体情况提供算法选择依据。引入温度参量的四维荧光光谱结合三阶校正算法的检测技术较三维荧光光谱技术,在组分光谱定性分辨和浓度定量检测方面能对复杂体系油类污染物实现快速有效,绿色无污染地检测,实现“数学分离”更有效代替“化学分离”。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号