首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
由于微流控芯片具有优异的集成性和灵活的可操作性,基于芯片上的检测方法被大量开发,发展十分迅速。其中,表面增强拉曼光谱(SERS)凭借其超高的灵敏度、独一无二的指纹谱和窄峰宽等特点成为一种广泛采用的检测手段。SERS微流控芯片集SERS检测技术与微流控芯片的优势于一体,一方面为SERS检测方法的重复性和可靠性提供了一个高效平台,另一方面推动了微流控芯片的功能拓展,在生物分子探测、细胞捕获乃至组织模拟等领域具有广阔的应用前景。本文在简要介绍SERS的原理及其生物传感应用的基础上,重点概述了SERS微流控芯片的构建及其在生物传感及检测中的应用,最后探讨了该研究方向存在的问题及发展方向。  相似文献   

2.
食源性致病微生物导致的食源性疾病已成为全球化的公共卫生问题。快速、有效地检测食源性致病微生物是实现食源性疾病预防与控制的关键环节,也是保障食品安全的技术关键。表面增强拉曼光谱(SERS)具有简单、快速、灵敏度高等优点,在食品安全、生物医学、环境监控等领域展现出良好的应用前景。介绍了近年来SERS在食源性致病微生物检测中的应用研究进展。对SERS技术概况、SERS增强理论及SERS增强基底进行了简要介绍,重点回顾了SERS在食源性致病微生物检测中的应用和发展现状。在食品安全分析方面,利用SERS与模式识别方法相结合对食品中常见食源性致病微生物能实现快速、有效鉴别,部分研究已应用于不同食品样品的分析,体现了SERS作为“指纹图谱”的分析优势;在医学诊断方面,SERS可对病理样品(如血液、尿液等)中食源性致病微生物进行快速检测,缩短了样本分析时间,使食源性疾病的快速诊断成为可能;随着微流控技术的发展,微流控平台结合SERS技术被称为“芯片实验室”应用于食源性致病微生物的检测,可提高分析的可控性,稳定性,特异性和灵敏度。通过对比分析,发现不同研究可采用不同分离方法、不同基底、不同目标捕获方式等实现了食源性致病微生物的检测,展示了不同方法间的差异性。已有研究表明了SERS在食源性致病微生物检测中应用可克服传统方法耗时等缺点,实现灵敏快速分析,为食品安全实时监控,食源性疾病即时诊断提供了有效的分析工具。同时,指出了SERS技术应用于食源性致病微生物分析依然面临很大挑战,(1)大多数研究并没有聚焦于实际样品,而标准培养液和实际样品的SERS检测存在较大差异,实际样品组分会对SERS响应产生干扰;(2)不同方法结果有较大差异,主要是由于纳米增强基底差异,吸附方式原理的差异,稳定性的差异等,因此需要更多深入研究进一步优化条件;(3)期望建立标准化的SERS方法替代传统技术,充分展示SERS作为新兴分析工具快速、灵敏、简捷的优势应用于食品安全,医学诊断等领域。将来,随着研究的深入及相关学科的发展,SERS作为极具潜力的快速分析工具,将在食品安全,生物医学等领域具有更广阔的应用前景。  相似文献   

3.
真菌是一种广泛存在于自然界的病原微生物,具有细胞核、细胞壁等结构,可以引起动、植物和人类的多种疾病。真菌感染是临床上常见的感染性疾病之一,使得近年来针对真菌的高效检测及真菌相关领域的研究备受关注。目前真菌的传统检测方法主要有培养、镜检与分子生物学检测法等,均具有操作复杂、耗时等缺点。表面增强拉曼散射(SERS)技术以其不受水分子干扰、能反应分子指纹信息、检测迅速等特点在真菌的检测与鉴别领域逐渐发挥出明显的优势。在简要介绍真菌的结构特点及真菌常用的检测方法基础之上,主要针对拉曼光谱(Raman spectrum)/SRES技术在真菌检测和鉴别中的应用进行调研和讨论。首先通过对Raman/SERS技术的特点以及真菌的结构特征进行解析,根据调研Raman/SERS技术用于真菌检测的相关文献,分析了SERS技术用于真菌检测的可行性,提出SERS技术在真菌检测时会面临检测灵敏度低、信号复杂、选择性和特异性差以及信号重现性和稳定性不佳等难点。为解决以上难题,分析了SERS的增强模式,重点针对SERS的纳米增强介质材料、SERS标签(SERS tag)的信号放大效应以及SERS光谱分析技术与微流控芯片分析技术结合等SERS分析新进展,予以了系统地综述和讨论。通过纳米材料选择和纳米微结构的构建,SERS增强介质所产生的SERS增强效应在真菌鉴别以及临床疾病快速诊断中显示出巨大的发展潜力;基于SERS tag产生的信号放大机制,可以有效提高真菌SERS检测的灵敏度、特异性和重现性;在微流控芯片中设计和集成SERS增强纳米微结构,构建基于SERS tag 的信号放大策略,开展针对真菌的快速高效测试方法研究,更有望实现真菌样本的高通量及高内涵SERS检测,其在真菌的鉴别和检测上显示出巨大的研究价值和应用前景。  相似文献   

4.
集成具有一序列微流控操作单元的芯片实验室技术,在微流控通道内铺陈金属纳米粒子(尤其是金、银以及铜纳米粒子)作为衬底,泵入多通道微纳升分析物,用于联用表面增强光谱在痕量、实时、原位、过程反应等检测中具有重要的意义。这种联用检测技术集成了芯片实验室和表面光谱两种技术的优点:芯片实验室技术集成流程式分步操作,实现筛选取样,分段、实时反应检测,减小样品量,稳定测试环境等优势以及表面增强光谱的光谱响应快,灵敏性和选择性强、原位检测等优点。借助于Drude模型以及适当的边界条件,外电场引发金属颗粒价电子的局域等离子振荡,并推导了产生共振的局域表面等离子增强以及受激感应偶极子振荡产生表面拉曼增强的物理电磁增强机制。综述了芯片实验室表面局域等离子检测在生物、医药、食品安全等方面的应用,检测通道的增加促使检测效率有较大的提高,同时检测限能力获得较大的突破。综述了芯片实验室技术结合表面增强拉曼光谱公共安全、生物医学、电化学和生物传感器等领域的应用, 表面增强拉曼光谱的高度灵敏性以及指纹性应用于痕量检测。根据芯片实验室技术在研究开发和应用已经获得不断的进展,结合3D打印技术,精准控制多通道结构尺寸,更好地满足设计的需求。表面等离子增强光谱以及表面增强拉曼光谱等表面光谱检测技术在应用上日趋成熟,获得突破传统显微镜的光学极限的分辨能力。这种联用技术在实际定性或者半定量痕量分析检测应用中具有光明的前景。  相似文献   

5.
许多生物分子的振动及转动能级都在太赫兹波段,因此太赫兹时域光谱技术可以用来探测生物分子。并且由于太赫兹波的光子能量较低,仅为毫电子伏量级,在探测过程中不会破坏生物样品,所以太赫兹时域光谱技术在未来生化检测等研究领域具有非常广泛的应用前景。研究表明,大多数生物分子需要在液体环境中才能充分发挥其生物活性,然而水溶液中的氢键在太赫兹波段会产生强烈的吸收。另外,水分子是极性分子,太赫兹波对极性分子也有很强的共振吸收,这使得利用太赫兹时域光谱技术检测液体环境中的活性生物分子非常困难。因此,许多研究团队将太赫兹时域光谱技术与微流控技术相结合,以减少各种因素对生物分子检测的影响。微流控技术是通过减小微流控芯片中液体池的深度来减少液体样品与太赫兹波的作用距离,从而减少水溶液对太赫兹波的吸收。使用对太赫兹波的透过率高达95%的环烯烃共聚物(COC:Zeonor 1420R)为材料制作了双层微流控芯片,该微流控芯片内部液体池的长度和宽度均为4 cm,深度为50μm。此外,由于在电解质溶液中存在大量自由移动的阴阳离子,所以为了探究电解质溶液中自由移动的阴阳离子对太赫兹透射特性的影响,使用外加电场装置对注入液...  相似文献   

6.
液滴微流控芯片是以液滴作为基本操作单元的微流控芯片,为实现其应用,需要对其中的液滴进行相应操控。利用温度场可以实现对液滴的迁移、聚合等方面的操控。本文针对温度场操控液滴迁移,采用VOF方法研究温差驱动微通道内液滴迁移特性,并探究温差、液滴尺寸以及液滴类型对液滴迁移特性的影响。研究结果能为温度场驱动的液滴微流控应用提供理论指导。  相似文献   

7.
很多生物大分子的特征振动模式和转动模式都位于太赫兹波段范围内,且太赫兹波的低电子能特性使其在实验过程中不会对待测样品造成破坏,所以可以采用太赫兹技术来鉴别生物样品。在许多研究中,生物样品都是溶液状态,溶液中水和其他分子之间的相互作用涉及很多生物现象,所以研究水的太赫兹特性就显得至关重要。众所周知,水分子是十分常见的极性分子,分子间氢键会与太赫兹波发生强烈的相互作用,从而使得水对太赫兹波有很强的吸收作用,导致利用太赫兹技术研究水溶液中生物样品的动态特性变得相当困难。为了解决这一难题,可以引入微流控技术。微流控技术以能精确操控微尺度流体而著称,其沟道深度可以达到50μm甚至更小。由于微流控技术减小了太赫兹波在流体中的传播距离,从而极大地减小了水对太赫兹波的吸收。本研究采用对太赫兹波具有高透过率的Zeonor 1420R材料制成了夹心式微流控芯片,芯片上微沟道的长度、宽度和深度分别为3 cm,4 mm和50 μm,太赫兹探测区的直径为3 mm。在制作微流控芯片时,利用厚度为50μm的强黏性双面胶代替传统夹心式微流控芯片中的聚二甲基硅氧烷(PDMS)薄膜,使微流控芯片在加热过程中不再有漏液现象。另外,设计了一个温控系统,它由加热片、温度传感器和温控仪构成,该温控系统能够以0.1 ℃的精度控制温度。利用该系统对微流控芯片中的去离子水进行加热,从20~90 ℃每隔5 ℃进行一次太赫兹透射测量,通过对实验数据的分析,发现随着温度升高,水的太赫兹透过率不断减小,说明水对太赫兹波的吸收随着温度的升高而变大。此结果为未来在不同环境温度下利用微流控技术研究液态样品的太赫兹吸收特性提供了先决条件,为未来太赫兹的应用与发展提供技术支持。  相似文献   

8.
许多生物大分子的振动和转动能级都落在THz波段范围内,因此可以采用THz光谱技术定性地鉴别生物样品。但是大部分生物分子的活性需在液体环境中才能表现出来,而水作为极性物质对THz波具有较强的吸收特性。因此,在THz光谱技术中通常采取各种措施来减少水的影响,以防止水溶液中生物样品的信息被掩盖。该研究设计了两种可利用透射式太赫兹时域光谱(THz-TDS)系统检测的夹心式微流控芯片,通过减小THz与水的作用距离来减少水对THz的吸收,从而达到高透过率的目的。微流控芯片采用环烯烃共聚物(Zeonor 1420R)作为基片和盖片,聚二甲基硅氧烷(PDMS)作为沟道夹层,利用THz-TDS系统对该芯片进行了测试,测得该芯片在0.2~2.6 THz频率范围内的透过率可以达到80%以上。在微流控芯片中分别加入去离子水、1,2-丙二醇以及二者在不同体积比下的混合溶液,并测量了它们的透射谱。结果表明,不同比例溶液的THz光谱明显不同,说明该芯片在测量液态样品方面的可行性。此外,用该芯片分别研究了不同浓度的氯化钾和碘化钾溶液,发现氯化钾溶液随着浓度的增加THz透过率减弱,而碘化钾溶液则相反。初步认为,电解质改变了水溶液中的氢键密度,从而导致溶液对THz吸收的改变。  相似文献   

9.
磁致旋光增强效应与微量样品旋光检测方法   总被引:3,自引:0,他引:3  
微流控光学检测系统的微型化和集成化是微流控技术的发展趋势,微量液体物质的旋光检测也是微流控光学技术的重要研究课题之一.分析了内含磁致旋光介质的旋光反射腔的偏光特性,理论预言这种旋光反射腔具有旋光增强效应,在此基础上提出了微量样品的旋光增强检测方法和器件设计原理.研究结果表明,该方法可以在小光程限制条件下显著提高磁旋光介质的检测灵敏度.在不考虑样品吸收的情况下.旋光增强法与普通消光法的检测灵敏度之比的极限约为78.5.该方法可以应用于微流控系统的旋光检测以及实现磁旋光仪器的小型化和微型化.  相似文献   

10.
郭威  吴坚  王春艳  陈涛 《发光学报》2018,39(11):1633-1638
银纳米离子的SERS技术和SEF技术的信号检测灵敏度非常高,可以用在微流控芯片的定量分析中。为了提高微流控芯片光学检测技术的检测精度,提出一种在微通道中添加银纳米粒子来增强SYBR GreenⅠ拉曼和荧光信号的方法,并对该方法的原理和增强效果进行了研究。首先,利用准分子激光器在PMMA基板上直写刻蚀出宽200 μm、深68 μm的微通道,接着将制备的银前体溶液加入微通道,通过加热制备出表面增强拉曼(SERS)和表面增强荧光(SEF)基板,接下来对添加银纳米粒子前后的拉曼和荧光信号分别进行对比,进一步研究了微通道中不同浓度银纳米粒子对SYBR GREEN I的拉曼和荧光信号增强效果。添加银纳米粒子后,表面增强拉曼(SERS)实验的增强因子为3.5×103,添加银纳米粒子的样品的荧光信号强度与不含银纳米粒子样品的荧光信号强度相比,约增加了1倍。结果表明,在微通道中检测SYBR Green I时通过增加银纳米粒子显著地增强了拉曼和荧光信号,这种方法可以用在以SYBR GreenⅠ做染料的微流控芯片检测技术中。  相似文献   

11.
随着抗菌药物广泛应用于临床,细菌耐药日益严重.实现快速、高灵敏、准确的细菌及其药物敏感性检测是缓解细菌耐药的关键环节.表面增强拉曼光谱(SERS)具有快速、灵敏、无损等优点,可直接获取分子指纹信息,它已成为一种有效的细菌及其耐药性检测技术.不同种类细菌的分子组成和结构存在差异、抗生素处理前后细菌的特征拉曼信号会发生变化...  相似文献   

12.
Hill M  Townsend RJ  Harris NR 《Ultrasonics》2008,48(6-7):521-528
Several approaches have been described for the manipulation of particles within an ultrasonic field. Of those based on standing waves, devices in which the critical dimension of the resonant chamber is less than a wavelength are particularly well suited to microfluidic, or "lab on a chip" applications. These might include pre-processing or fractionation of samples prior to analysis, formation of monolayers for cell interaction studies, or the enhancement of biosensor detection capability. The small size of microfluidic resonators typically places tight tolerances on the positioning of the acoustic node, and such systems are required to have high transduction efficiencies, for reasons of power availability and temperature stability. Further, the expense of many microfabrication methods precludes an iterative experimental approach to their development. Hence, the ability to design sub-wavelength resonators that are efficient, robust and have the appropriate acoustic energy distribution is extremely important. This paper discusses one-dimensional modelling used in the design of ultrasonic resonators for particle manipulation and gives example of their uses to predict and explain resonator behaviour. Particular difficulties in designing quarter wave systems are highlighted, and modelling is used to explain observed trends and predict performance of such resonators, including their performance with different coupling layer materials.  相似文献   

13.
化学武器和技术的扩散使化学恐怖活动成为事关世界安全的突出问题之一.针对化学战剂的高毒性和快速致命特点,表面增强拉曼散射(SERS)光谱技术研究可以实现生化战剂的快速、高灵敏实时检测,有助于战时和突发恐怖袭击时对人员的及时救治和预防,为更好的防范化学武器威胁和恐怖袭击提供必要的技术保障.本文主要对SERS技术在化学战剂检...  相似文献   

14.
表面增强拉曼散射(SERS)是一种无损、高灵敏、快速检测痕量重金属离子的光谱技术。通过调控和优化纳米结构图案和尺寸可显著增强局域表面等离子体共振(LSPR)与表面等离子体激元(SPP)的耦合以提升电磁场强度,是获得高性能SERS芯片的重要新途径。提出一种用于检测痕量汞离子的新型金属/介质三维周期纳米结构高性能SERS芯片。利用新型应力分化式双层模板纳米压印方法实现了大面积高均一纳米结构SERS芯片的低成本、批量制备。该芯片成功用于痕量汞离子的高灵敏快速检测。采用有限元方法对压印过程界面微区应力进行模拟,通过调控压印模板纵向结构和横向尺寸对模板进行设计。模拟结果表明,纵向有台阶结构的双层模板图案区域呈现高、低两个应力分区,其中,高应力区占图案~72%的面积,其应力均匀性比单层模板提升17%;低应力区分布在图案边缘~28%的区域,可有效减小脱模切应力。当模板横向尺寸从15 mm缩减至7 mm,界面应力整体提升1~2个数量级,将显著提高压印成功率。使用不同横向尺寸的单、双层模板进行压印实验结果表明,尺寸为7 mm的压力分化式双层模板实现了大面积高均一纳米结构的高质量制备,这与模拟结果高度一致。在压印胶纳米结构上构筑金纳米颗粒得到金属/介质三维周期纳米结构SERS芯片。此芯片对罗丹明6G分子的检测极限为2.08×10-12 mol·L-1,增强因子达3×108,检测均一性RSD为8.07%。该芯片对汞离子的探测限浓度仅为10 ppt(5.0×10-11 mol·L-1),浓度线性工作范围为5.0×10-11~5.0×10-5 mol·L-1,跨度达6个数量级,呈现良好的线性关系(R2=0.966),在目前汞离子检测技术中具有显著优势。提出一种通用的高灵敏快速检测痕量物质的SERS芯片设计和制备方法。这种基于光学原理芯片“结构设计-批量制备-实际应用”的研究范式将连接芯片设计和批量制备两个关键点,推动其实际应用。  相似文献   

15.
SERS标记免疫检测研究进展   总被引:2,自引:0,他引:2  
表面增强拉曼光谱(SERS)用于标记免疫检测是标记免疫学与SERS相结合的一门新型的研究技术。20世纪70年代,SERS现象的发现与证实给拉曼光谱技术的研究注入了新的活力。SERS因具有高灵敏度、较高选择性以及适合水溶液物质结构研究等特点,近年来已在生物医学研究领域中显示出独特的潜在应用前景。在标记免疫领域,SERS标记免疫研究更是得到了迅速的发展,成为了国内外的研究热点。文章从SERS标记免疫检测灵敏度的提高、非特异性吸附的降低、多组分检测等三方面叙述了SERS标记免疫检测的原理、特点、存在问题及最新发展。归纳了目前提高SERS标记免疫检测灵敏度的研究技术,阐述了研究中非特异性吸附带来的负面影响,简介了实验室的多组分研究工作。同时,对SERS标记免疫技术未来的研究方向与发展前景进行了展望。  相似文献   

16.
A surface‐enhanced Raman spectroscopy (SERS) detection method that allows dynamic on‐demand generation of SERS substrates at locations of interest for in situ molecular sensing is demonstrated. Thermal convection and thermophoresis, which are both generated in a laser‐induced temperature gradient, are used to accumulate suspended plasmonic nanostructures to form 3D SERS substrate. Raman signals of melamine, which is used as a model analyte, increase to ≈117‐fold within 2 min of laser irradiation because of the accumulation. In addition, it is demonstrated that the accumulation of the nanostructures is reversible, and that reproducible SERS effects can be obtained during a repeated heating and cooling process. Because of the capability of on‐demand generation of a high density of SERS hot spots at different locations in solution, this particle manipulation and SERS detection method is applicable to monitor temporal and spatial variations of the concentrations of molecules. The complexity of the detection system remains the same when using this method since all the measurements are performed with a conventional Raman system and simple fluid channels. The required temperature gradient is generated by the laser used to excite Raman signals, and no nanofabricated substrates and complicated microfluidic or optical components are needed.  相似文献   

17.
3.3'-Diethylthiatricarbocyanine iodide (DTTC) dye is an important infrared Raman probe molecule, and has received great attention in the past decades due to their potential applications in Raman imaging, single cell detection, and tumor marker. In the present work, ordinary Raman, surface enhanced Raman scattering (SERS), and theoretical Raman spectra were given to estimate the Raman spectrum of DTTC suspension. More specifically, the original gold nanospheres (60-nm diameter) and gold nanorods (NRs) were encoded with DTTC and stabilized with a layer of thiol-polyethylene glycol (PEG) as Raman reporter, and SERS data were obtained from the samples. Density functional theory (DFT) calculation was applied to calculate the optimized Raman spectra of DTTC water solvent on a B3LYP/6-31G level. Subsequently, the obtained experimental spectra from the DTTC were carefully compared with the theoretically calculated spectra. From the spectra comparation, good agreements were obtained between the theoretical and experimental results. This work will facilitate the development of ultrasensitive SERS probes for advanced biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号