首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A three-dimensional, analytic potential energy surface for CO(2)-He that explicitly incorporates its dependence on the Q(3) asymmetric-stretch normal-mode coordinate of the CO(2) monomer has been obtained by least-squares fitting new ab initio interaction energies to a new three-dimensional Morse/Long-Range (3D-MLR) potential function form. This fit to 2832 points has a root-mean-square (RMS) deviation of 0.032 cm(-1) and requires only 55 parameters. The resulting pure ab initio potential provides a good representation of the experimental microwave and infrared data: for 51 pseudo microwave and 49 infrared transitions the RMS discrepancies are 0.0110 and 0.0445 cm(-1), respectively. Scaling this surface using only two morphing parameters yields an order of magnitude better agreement with experiments, with RMS discrepancies of only 0.0025 and 0.0038 cm(-1), respectively. The calculated infrared band origin shift associated with the nu(3) fundamental of CO(2) is 0.109 cm(-1), in good agreement with the (extrapolated) experimental value of 0.095 cm(-1).  相似文献   

2.
The reliability of five N2-Ar potential-energy surfaces in representing the N2-Ar interaction has been investigated by comparing their abilities to reproduce a variety of experimental results, including interaction second viral coefficients, bulk transport properties, relaxation phenomena, differential scattering cross sections, and the microwave and infrared spectra of the van der Waals complexes. Four of the surfaces are the result of high-level ab initio quantal calculations; one of them utilized fine tuning by fitting to microwave data. To date, these four potential-energy surfaces have only been tested against experimental microwave data. The fifth potential-energy surface, based upon the exchange-Coulomb potential-energy model for the interaction of closed-shell species, is developed herein: it is a combination of a damped dispersion energy series and ab initio calculations of the Heitler-London interaction energy, and has adjustable parameters determined by requiring essentially simultaneous agreement with selected quality interaction second viral coefficient and microwave data. Comparisons are also made with the predictions of three other very good literature potential-energy surfaces, including the precursor of the new exchange-Coulomb potential-energy surface developed here. Based upon an analysis of a large body of information, the new exchange-Coulomb and microwave-tuned ab initio potential-energy surfaces provide the best representations of the N2-Ar interaction; nevertheless, the other potential-energy surfaces examined still have considerable merit with respect to the prediction of specific properties of the N2-Ar van der Waals complex. Of the two recommended surfaces, the new exchange-Coulomb surface is preferred on balance due to its superior predictions of the effective cross sections related to various relaxation phenomena, and to its reliable, and relatively simple, representation of the long-range part of the potential-energy surface. Moreover, the flexibility still inherent in the exchange-Coulomb potential form can be further exploited, if required, in future studies of the N2-Ar interaction.  相似文献   

3.
Rotational spectra of an open-shell complex, Ar-NO, in the electronic ground state have been analyzed by employing an analysis using a free-rotor model, where previously observed data by Mills et al. [J. Phys. Chem. 90, 3331 (1986); 90, 4961 (1986)] and additional transitions observed by Fourier-transform microwave spectroscopy in the present study are simultaneously analyzed with a standard deviation of the least-squares fit to be 27.5 kHz. A two-dimensional intermolecular potential energy surface for Ar-NO has been determined from the analysis. The determined potential energy surface is compared with those of Ar-OH and Ar-SH, which are also complexes containing an open-shell species with the 2Pi ground electronic state.  相似文献   

4.
Pure rotational transitions of the weakly bound complex He-N(2)O and three minor isotopomers (He-(14)N(15)NO, He-(15)N(14)NO, and He-(15)N(15)NO) were measured in the frequency region from 6 to 20 GHz. Predictions for the microwave transition frequencies were based on the infrared work by Tang and McKellar [J. Chem. Phys. 117, 2586 (2002)]. In the case of (14)N containing isotopomers, nuclear quadrupole hyperfine structure of the rotational transitions was observed and analyzed. The resulting spectroscopic parameters were used to determine geometrical and dynamical information about the complex. An ab initio potential energy surface was calculated at the coupled cluster level of theory with single and double excitations and perturbative inclusion of triple excitations. This surface was constructed using the augmented correlation consistent polarized valence triple zeta basis set for all atoms with the inclusion of bond functions for the van der Waals bond. Bound state calculations were done to determine the energies of low-lying rovibrational levels that are supported by the potential energy surface. The resulting transition energies agree with the experimental values to 1% or better.  相似文献   

5.
An improved three-dimensional potential energy surface for the H(2)-Kr system is determined from a direct fit of new infrared spectroscopic data for H(2)-Kr and D(2)-Kr to a potential energy function form based on the exchange-Coulomb model for the intermolecular interaction energy. These fits require repetitive, highly accurate simulations of the observed spectra, and both the strength of the potential energy anisotropy and the accuracy of the new data make the "secular equation perturbation theory" method used in previous analyses of H(2)-(rare gas) spectra inadequate for the present work. To address this problem, an extended version of the "iterative secular equation" method was developed which implements direct Hellmann-Feynman theorem calculation of the partial derivatives of eigenvalues with respect to parameters of the Hamiltonian which are required for the fits.  相似文献   

6.
The complex formed between water and tetrafluoromethane has been studied by infrared matrix isolation spectroscopy and ab initio calculations. The geometries of the CF4-H2O complexes were optimized in two steps at the MP2/aug-cc-pVTZ level of theory. The structure found at this level was reoptimized on the CP-corrected potential energy surface. The interaction energy was partitioned according to the SAPT scheme and the topological analysis of the electron density was performed. The optimized structure corresponds to the nonhydrogen bonded complex with an oxygen atom of water oriented toward the carbon atom of CF4. The infrared spectra of CF4-H2O /Ne(Ar) matrices demonstrate the presence of a well defined CF4-H2O structure in accord with theoretical prediction. Two complex vibrations were identified in the spectra of neon matrices and four vibrations were observed in the spectra of argon matrices. The available experimental data are in accord with the CP-corrected calculated data.  相似文献   

7.
The infrared spectrum of mass selected Li(+)-D(2) cations is recorded in the D-D stretch region (2860-2950 cm(-1)) in a tandem mass spectrometer by monitoring Li(+) photofragments. The D-D stretch vibration of Li(+)-D(2) is shifted by -79 cm(-1) from that of the free D(2) molecule indicating that the vibrational excitation of the D(2) subunit strengthens the effective Li(+)cdots, three dots, centeredD(2) intermolecular interaction. Around 100 rovibrational transitions, belonging to parallel K(a)=0-0, 1-1, and 2-2 subbands, are fitted to a Watson A-reduced Hamiltonian to yield effective molecular parameters. The infrared spectrum shows that the complex consists of a Li(+) ion attached to a slightly perturbed D(2) molecule with a T-shaped equilibrium configuration and a 2.035 A vibrationally averaged intermolecular separation. Comparisons are made between the spectroscopic data and data obtained from rovibrational calculations using a recent three dimensional Li(+)-D(2) potential energy surface [R. Martinazzo, G. Tantardini, E. Bodo, and F. Gianturco, J. Chem. Phys. 119, 11241 (2003)].  相似文献   

8.
Two possible conformers of the dinuclear complex Mn Re(CO)10, each of C(4v) symmetry, with eclipsed and staggered conformations, have been analyzed theoretically. Using both the B3LYP and BP86 density functionals we find that the staggered form is lower in energy. A determination of the B3LYP potential energy surface as a function of the Mn-Re distance is presented for both conformers. The computed bond lengths, bond angles, and rotational constant for the staggered conformation compare favorably with the results from microwave experiments. The harmonic frequencies for the staggered structure have been determined using several basis sets, with both analytical and finite difference methods. These unscaled vibrational frequencies, together with their intensities for both infrared and Raman activity, are used to assign the three most intense experimental IR and Raman bands, and in particular, the nu(CO) region. The lowest A(2) vibration was calculated to occur at 41 cm(-1) in the staggered conformer; this frequency becomes imaginary in the (saddle point) eclipsed form. Several fundamentals remain to be observed experimentally.  相似文献   

9.
Vibration-rotation spectra of the OCS-(CO(2))(2) van der Waals complex were studied by means of direct infrared absorption spectroscopy. Complexes were generated in a supersonic slit-jet apparatus, and the expansion gas was probed using a rapid-scan tunable diode laser. Infrared bands were observed for two different isomeric forms of the complex. A relatively strong band centered at 2058.799 cm(-1) was assigned to the most stable isomer, which has a barrel-shaped geometry and is already known from microwave spectroscopy. A weaker infrared band centered at 2050.702 cm(-1) was assigned to a new isomeric form, observed here for the first time, which was expected on the basis of ab initio calculations. Infrared bands for seven isotopomers were recorded in an attempt to quantify the structure of the new isomer. Because it has no symmetry elements, nine parameters are needed to fully define the geometry. It was possible to determine six of these which define the relative position of the OCS monomer with respect to the CO(2) dimer fragment in the complex while the remaining three were fixed at their ab initio values. Similarities and differences between the faces of the two isomers of OCS-(CO(2))(2) and the associated dimers are discussed.  相似文献   

10.
A new potential energy surface involving the antisymmetric Q(3) normal mode of CO(2) for the He-CO(2) van der Waals complex is constructed at the coupled-cluster singles and doubles with noniterative inclusion of connected triple [CCSD(T)] level with augmented correlation-consistent quadruple-zeta (aug-cc-pVQZ) basis set plus bond functions. Two vibrationally adiabatic potentials with CO(2) at both the ground and the first excited vibrational states are generated from the integration of the three-dimensional potential over the Q(3) coordinate. The potential has a T-shaped global minimum and two equivalent linear local minima. The bound rovibrational energy levels are obtained using the radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm. The observed band origin shift of the complex (0.0946 cm(-1)) is successfully reproduced by our calculation (0.1034 cm(-1)). The infrared spectra of the complex are also predicted. The fundamental band is in excellent agreement with the experiment. Most of the transitions corresponding to the observed hot band [M. J. Weida et al., J. Chem. Phys. 101, 8351 (1994)] are assigned reasonably.  相似文献   

11.
We report calculations using a reaction surface Hamiltonian for which the vibrations of a molecule are represented by 3N-8 normal coordinates, Q, and two large amplitude motions, s(1) and s(2). The exact form of the kinetic energy operator is derived in these coordinates. The potential surface is first represented as a quadratic in Q, the coefficients of which depend upon the values of s(1),s(2) and then extended to include up to Q(6) diagonal anharmonic terms. The vibrational energy levels are evaluated by solving the variational secular equations, using a basis of products of Hermite polynomials and appropriate functions of s(1),s(2). Our selected example is malonaldehyde (N=9) and we choose as surface parameters two OH distances of the migrating H in the internal hydrogen transfer. The reaction surface Hamiltonian is ideally suited to the study of the kind of tunneling dynamics present in malonaldehyde. Our results are in good agreement with previous calculations of the zero point tunneling splitting and in general agreement with observed data. Interpretation of our two-dimensional reaction surface states suggests that the OH stretching fundamental is incorrectly assigned in the infrared spectrum. This mode appears at a much lower frequency in our calculations due to substantial transition state character.  相似文献   

12.
(Microwave spectra of the four isotopologue/isotopomers, HI-(12)C(16)O(2), HI-(12)C(18)O(2), HI-(12)C(18)O(16)O, and HI-(12)C(16)O(18)O, have been recorded using pulsed-nozzle Fourier transform microwave spectroscopy. In the last two isotopomers, the heavy oxygen atom tilted toward and away from the HI moiety, respectively. Only b-type Ka = 1 <-- 0 transitions were observed. Spectral analysis provided molecular parameters including rotational, centrifugal distortion, and quadrupole constants for each isotopomer. Then, a four-dimensional intermolecular energy surface of a HI-CO2 complex was generated, morphing the results of ab initio calculations to reproduce the experimental data. The morphed potential of HI-(12)C(16)O(2) had two equivalent global minima with a well depth of 457(14) cm(-1) characterized by a planar quasi-T-shaped structure with the hydrogen atom tilted toward the CO2 moiety, separated by a barrier of 181(17) cm(-1). Also, a secondary minimum is present with a well depth of 405(14) cm(-1) with a planar quasi-T-shaped structure with the hydrogen atom tilted away from the CO2 moiety. The ground state structure of HI-(12)C(16)O(2) was determined to have a planar quasi-T-shaped geometry with R = 3.7717(1) A, thetaOCI = 82.30(1) degrees , thetaCIH = 71.55(1) degrees . The morphed potential obtained is now available for future studies of the dynamics of photoinitiated reactions of this complex.  相似文献   

13.
The assignment of the rovibrational spectra of molecule-Ne complexes is always a challenge to study van der Waals systems, since they usually exhibit behavior intermediate between free rotor and rigid rotor. In this paper, the microwave and infrared spectra of CH3F-Ne, a model system for symmetric-top-atom dimer, were firstly predicted and analyzed based on the four-dimensional ab initio intermolecular potential energy surfaces(PESs), which explicitly incorporate the v3(C-F) stretch normal model coordinate of the CH3F monomer. Analytic three-dimensional PESs were obtained by least-squares fitting vibrationally averaged interaction energies for v3(CH3F)=0 and 1 to the Morse/long-range(MLR) potential function for symmetry top impurity with atom model. These PESs fitting to 2340 points have root-mean-square(RMS) deviations of 0.07 cm-1, and require only 167 parameters. Based on the analytical vibrationally averaged PESs, the rovibrational energy levels were calculated by employing Lanczos algorithm, with combined radial discrete variable representation and parity-adapted angular finite basis representation. Based on the wavefunction analysis and comparison of CH3F-Ne with CH3F-He and CH3F-Ar complexes, the bound states were assigned. Spectral parameters for CH3F-Rg(Rg:rare gas, Rg=He, Ne, Ar) complexes were fitted and discussed. Temperature dependent transition intensities for CH3F-Ne were also reported and analyzed. The complete microwave and infrared spectra information for CH3F-Ne made it possible to provide important guidance for future experimental spectroscopic assignments.  相似文献   

14.
The molecular vibrations of xanthine were investigated in polycrystalline sample, at room temperature by Fourier transform infrared (FTIR) and FT-Raman spectroscopies. The spectra of the molecule have been recorded in the regions 4000-50 cm(-1) and 3500-100 cm(-1), respectively. Theoretical information on the optimized geometry, harmonic vibrational frequencies, infrared and Raman intensities were obtained by means of ab initio Hartree-Fock (HF) and density functional theory (DFT) gradient calculations with complete relaxation in the potential energy surface using 6-311++G(d,p) basis set. The vibrational frequencies which were determined experimentally from the spectral data are compared with those obtained theoretically from ab initio and DFT calculations. A close agreement was achieved between the observed and calculated frequencies by refinement of the scale factors. The infrared and Raman spectra were also predicted from the calculated intensities. Thermodynamic properties like entropy, heat capacity, zero point energy have been calculated for the molecule. Unambiguous vibrational assignment of all the fundamentals was made using the potential energy distribution (PED).  相似文献   

15.
Pure rotational transitions in the ground state for Ar-OH and Ar-OD [Y. Ohshima et al., J. Chem. Phys. 95, 7001 (1991) and Y. Endo et al., Faraday Discuss. 97, 341 (1994)], those in the excited states of the OH vibration, nu(s)=1 and 2, observed by Fourier-transform microwave spectroscopy in the present study, rotation-vibration transitions observed by infrared-ultraviolet double-resonance spectroscopy [K. M. Beck et al., Chem. Phys. Lett. 162, 203 (1989) and R. T. Bonn et al., J. Chem. Phys. 112, 4942 (2000)], and the P-level structure observed by stimulated emission pumping spectroscopy [M. T. Berry et al., Chem. Phys. Lett. 178, 301 (1991)] have been simultaneously analyzed to determine the potential energy surface of Ar-OH in the ground state. A Schrodinger equation, considering all the freedom of motions for an atom-diatom system in the Jacobi coordinate, R, theta, and r, was numerically solved to obtain energies of the rovibrational energy levels using the discrete variable representation method. A three-dimensional potential energy surface is determined by a least-squares fitting. In the analysis the potential parameters, obtained by ab initio calculations at the RCCSD(T) level of theory with a set of basis functions of aug-cc-pVTZ and midbond functions, are used as initial values. The determined intermolecular potential energy surface and its dependence on the OH monomer bond length are compared with those of an isovalent radical complex, Ar-SH.  相似文献   

16.
The authors construct a rigid-body (five-dimensional) potential energy surface for the water-nitrogen complex using the systematic intermolecular potential extrapolation routine. The intermolecular potential is then extrapolated to the limit of a complete basis set. An analytic fit of this surface is obtained, and, using this, the global minimum energy is found. The minimum is located in an arrangement in which N2 is near the H atom of H2O, almost collinear with the OH bond. The best estimate of the binding energy is 441 cm-1 (1 cm-1 approximately 1.986 43x10(-23) J). The extrapolated potential is then used to calculate the second cross virial coefficient over a wide temperature range (100-3000 K). These calculated second virial coefficients are generally consistent with experimental data, but for the most part the former have smaller uncertainties.  相似文献   

17.
Variable temperature (-115 to -155 degrees C) studies of the infrared spectra (3200-400 cm-1) of 4-fluoro-1-butene, CH2=CHCH2CH2F, dissolved in liquid krypton have been carried out. The infrared spectra of the gas and solid as well as the Raman spectra of the gas, liquid, and solid have also been recorded from 3200 to 100 cm-1. From these data, an enthalpy difference of 72 +/- 5 cm-1 (0.86 +/- 0.06 kJ x mol-1) has been determined between the most stable skew-gauche II conformer (the first designation refers to the position of the CH2F group relative to the double bond, and the second designation refers to the relative positions of the fluorine atom to the C-C(=C) bond) and the second most stable skew-trans form. The third most stable conformer is the skew-gauche I with an enthalpy difference of 100 +/- 7 cm-1 (1.20 +/- 0.08 kJ x mol-1) to the most stable form. Larger enthalpy values of 251 +/- 12 cm-1 (3.00 +/- 0.14 kJ x mol-1) and 268 +/- 17 cm-1 (3.21 +/- 0.20 kJ x mol-1) were obtained for the cis-trans and cis-gauche conformers, respectively. From these data and the relative statistical weights of one for the cis-trans conformer and two for all other forms, the following conformer percentages are calculated at 298 K: 36.4 +/- 0.9% skew-gauche II, 25.7 +/- 0.1% skew-trans, 22.5 +/- 0.2% skew-gauche I, 10.0 +/- 0.6% cis-gauche, and 5.4 +/- 0.2% cis-trans. The potential surface describing the conformational interchange has been analyzed and the corresponding two-dimensional Fourier coefficients were obtained. Nearly complete vibrational assignments for the three most stable conformers are proposed and some fundamentals for the cis-trans and the cis-gauche conformers have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared, and Raman intensities have been predicted from ab initio calculations and compared to the experimental values when applicable. The adjusted r0 structural parameters have been determined by combining the ab initio predicted parameters with previously reported rotational constants from the microwave data. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

18.
The intermolecular potential energy surface of He-LiH complex was studied using the full-electronic complete forth-order Miller-Plesset perturbation (MPPT) method.In ab initio calculations,the bond length of LiH was fixed at 0 159 5 nm.The potential has two local minima of Vm=-179.93 cm for the linear He LiH geormetrv at Rm=0.227 nm and Vm=-10.44 cm-1 for the linear He-HL1 geometry at Rm=0.516 nm The potemal exhibits strong anisotropy The analytic potential function with 31 parameters was determined by fitting to the calculated ab,mtio potentials The influence of variation of LiH bond length on the potential energy surface was also studied  相似文献   

19.
IR-UV double resonance spectroscopy has been used to characterize hindered internal rotor states (n(K) = 0(0), 1(1), and 1(0)) of the CN-Ne complex in its ground electronic state with various degrees of CN stretch (ν(CN)) excitation. Rotationally resolved infrared overtone spectra of the CN-Ne complex exhibit perturbations arising from Coriolis coupling between the closely spaced hindered rotor states (1(1) and 1(0)) with two quanta of CN stretch (ν(CN) = 2). A deperturbation analysis is used to obtain accurate rotational constants and associated average CN center-of-mass to Ne separation distances as well as the coupling strength. The energetic ordering and spacings of the hindered internal rotor states provide a direct reflection of the weakly anisotropic intermolecular potential between CN X (2)Σ(+) and Ne, with only an 8 cm(-1) barrier to CN internal rotation, from which radially averaged anisotropy parameters (V(10) and V(20)) are extracted that are consistent for ν(CN) = 0-3. Complementary ab initio calculation of the CN X (2)Σ(+) + Ne potential using MRCI+Q extrapolated to the complete one-electron basis set limit is compared with the experimentally derived anisotropy by optimizing the radial potential at each angle. Experiment and theory are in excellent accord, both indicating a bent minimum energy configuration and nearly free rotor behavior. Analogous experimental and theoretical studies of the CN-Ne complex upon electronic excitation to the CN B (2)Σ(+) state indicate a slightly more anisotropic potential with a linear CN-Ne minimum energy configuration. The results from these IR-UV double resonance studies are compared with prior electronic spectroscopy and theoretical studies of the CN-Ne system.  相似文献   

20.
The infrared spectrum of mass-selected Na(+)-D(2) complexes is recorded in the D-D stretch vibration region (2915-2972 cm(-1)) by detecting Na(+) photofragments resulting from photo-excitation of the complexes. Analysis of the rotationally resolved spectrum confirms a T-shaped equilibrium geometry for the complex and a vibrationally averaged intermolecular bond length of 2.461 A?. The D-D stretch band centre occurs at 2944.04 cm(-1), representing a -49.6 cm(-1) shift from the Q(1)(0) transition of the free D(2) molecule. Variational rovibrational energy level calculations are performed for Na(+)-D(2) utilising an ab initio potential energy surface developed previously for investigating the Na(+)-H(2) complex [B. L. J. Poad et al., J. Chem. Phys. 129, 184306 (2008)]. The theoretical approach predicts a dissociation energy for Na(+)-D(2) of 923 cm(-1) with respect to the Na(+)+ D(2) limit, reproduces the experimental rotational constants to within 1-2%, and gives a simulated spectrum closely matching the experimental infrared spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号