首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Monoclinic lithium vanadium phosphate, alpha-Li(3)V(2)(PO(4))(3), is a highly promising material proposed as a cathode for lithium-ion batteries. It possesses both good ion mobility and high lithium capacity because of its ability to reversibly extract all three lithium ions from the lattice. Here, using a combination of neutron diffraction and (7)Li MAS NMR studies, we are able to correlate the structural features in the series of single-phase materials Li(3-y)V(2)(PO(4))(3) with the electrochemical voltage-composition profile. A combination of charge ordering on the vanadium sites and lithium ordering/disordering among lattice sites is responsible for the features in the electrochemical curve, including the observed hysteresis. Importantly, this work highlights the importance of ion-ion interactions in determining phase transitions in these materials.  相似文献   

2.
The electrochemical lithium insertion reaction of monoclinic Li(3)Fe(2)(PO(4))(3) as cathode materials of lithium-ion batteries was investigated from the viewpoint of the electronic structure around Fe and the polyanion unit (PO(4)). Fe K-edge and L(III,II)-edge XAS measurements revealed that Fe(3+) was reduced to Fe(2+) upon Li insertion. In addition, O K-edge and P K-edge XAS also showed spectral changes upon Li insertion, which corresponded to changes in the electronic structure of the PO(4) polyanion unit. The ab initio density functional calculation was performed within the GGA and LDA+U methods. The LDA+U method reproduced well the cell potential upon lithium intercalation into Li(3)Fe(2)(PO(4))(3), whereas the GGA method underestimated the intercalation. The calculated electronic structure of Li(3)Fe(2)(PO(4))(3) described strong P 3p-O 2p covalent bonding, while weak hybridization was indicated in Fe 3d-O 2p. Moreover, the difference in electronic density between Li(3)Fe(2)(PO(4))(3) and the lithiated model indicated that the polarization effect between inserted Li and oxygen induced the changes in the electronic structure around the polyanion unit.  相似文献   

3.
High-resolution solid-state (7)Li NMR was used to characterize the structure and dynamics of lithium ion transport in monoclinic Li(3)V(2)(PO(4))(3). Under fast magic-angle spinning (MAS) conditions (25 kHz), three resonances are clearly resolved and assigned to the three unique crystallographic sites. This assignment is based on the Fermi-contact delocalization interaction between the unpaired d-electrons at the vanadium centers and the lithium ions. One-dimensional variable-temperature NMR and two-dimensional exchange spectroscopy (EXSY) are used to probe Li mobility between the three sites. Very fast exchange, on the microsecond time scale, was observed for the Li hopping processes. Activation energies are determined and correlated to structural properties including interatomic Li distances and Li-O bottleneck sizes.  相似文献   

4.
以FePO4·xH2O、V2O5、NH4H2PO4和Li2CO3为原料, 以乙二酸为还原剂, 通过湿化学还原-低温热处理方法制备出锂离子复合正极材料xLiFePO4·yLi3V2(PO4)3. X射线衍射(XRD)结果表明, 合成的材料中橄榄石结构的LiFePO4和单斜晶系的Li3V2(PO4)3两相共存; 从复合材料中LiFePO4、Li3V2(PO4)3相对于相同条件下制备的纯相LiFePO4和Li3V2(PO4)3的晶格常数变化以及结合高分辨透射电子显微镜(HRTEM)、能量散射X射线(EDAX)的结果可以看出, 在复合材料xLiFePO4·yLi3V2(PO4)3中存在部分V和Fe, 分别掺杂在LiFePO4和Li3V2(PO4)3中, 并形成固溶体; X射线光电子能谱(XPS)结果表明, Fe/V在复合材料中的价态与各自在LiFePO4和Li3V2(PO4)3中的价态保持一致, 分别为+2 和+3价. 充放电测试表明, 制备出的复合正极材料电化学性能明显优于单一的LiFePO4和Li3V2(PO4)3; 循环伏安测试表明, 复合正极材料具有优良的脱/嵌锂性能.  相似文献   

5.
Lithium mobility in LiM(2)(PO(4))(3) compounds, M = Ge and Sn, has been investigated by (7)Li Nuclear Magnetic Resonance (NMR) spectroscopy, and deduced information compared with that reported previously in Ti, Zr and Hf members of the series in the temperature range 100-500 K. From the analysis of (7)Li NMR quadrupole interactions (C(Q) and η parameters), spin-spin T(2)(-1) and spin-lattice T(1)(-1) relaxation rates, structural sites occupancy and mobility of lithium have been deduced. Below 250 K, Li ions are preferentially located at M(1) sites in rhombohedral phases, but occupy intermediate M(12) sites between M(1) and M(2) sites in triclinic ones. In high-temperature rhombohedral phases, a superionic state is achieved when residence times at M(1) and M(12) sites become similar and correlation effects on Li motion decrease. This state can be obtained by large order-disorder transformations in rhombohedral phases or by sharp first order transitions in triclinic ones. The presence of two relaxation mechanisms in T(1)(-1) plots of rhombohedral phases has been associated with departures of conductivity from the Arrhenius behavior. Long term mobility of lithium is discussed in terms of the cation vacancy distribution along conduction paths.  相似文献   

6.
娄太平  王家良 《物理化学学报》2007,23(10):1642-1646
锂离子传导材料LiTi2(PO4)3能在LiCl水溶液中高选择性地与Na+进行离子交换. 研究了NaCl 溶液中LiTi2(PO4)3上的Na/Li离子交换反应, 实验结果表明, 升高温度能显著提高LiTi2(PO4)3上的Na/Li交换反应速率, 其离子交换动力学规律可近似由JMAK(Johnson-Mehl-Aurami-Kalmogorav)方程描述. 对LiTi2(PO4)3在水和NaCl溶液中的溶解行为的研究结果表明, 升高温度能加快其在水中的溶解速率, pH值过大或过小及离子交换都会加剧LiTi2(PO4)3的溶解.  相似文献   

7.
The NASICON compound Li(0.2)Nd(0.8/3)Zr(2)(PO(4))(3), synthesized by a sol-gel process, has been structurally characterized by TEM and powder diffraction (neutron and X-ray). It crystallizes in the space group R3[combining macron] (No. 148): at room temperature, the Nd(3+) ions present an ordered distribution in the [Zr(2)(PO(4))(3)](-) network which leads to a doubling of the classical c parameter (a = 8.7160(3) A, c = 46.105(1) A). Above 600 degrees C, Nd(3+) diffusion occurs leading at 1000 degrees C to the loss of the supercell. This reversible cationic diffusion in a preserved 3D [Zr(2)(PO(4))(3)](-) network is followed through thermal X-ray diffraction. Ionic conductivity measurements have been undertaken by impedance spectroscopy, while some results concerning the sintering of the NASICON compound are given.  相似文献   

8.
Influence of the vacancy concentration on the Li conductivity of the (Li(1-x)Na(x))(0.2)La(0.6)TiO(3) and (Li(1-x)Na(x)(0.5)La(0.5)TiO(3) perovskite series, with 0 < or = x < 1, has been investigated by neutron diffraction (ND), impedance spectroscopy (IS), nuclear magnetic resonance (NMR), and Monte Carlo simulations. In both series, Li(+) ions occupy unit cell faces, but Na(+) ions are located at A sites of the perovskite. From this fact, the amount of vacant A sites that participate in Li conductivity is given by the expression n(v) = [Li] + square, where square is the nominal vacancy concentration. Substitution of Li by Na decreases the amount of vacancies, reducing drastically the Li conductivity when n(v) approaches the percolation threshold of the perovskite conduction network. In disordered (Li(1-x)Na(x))(0.5)La(0.5)TiO(3) perovskites, the percolation threshold is 0.31; however, in ordered (Li(1-x)Na(x))(0.2)La(0.6)TiO(3) perovskites, this parameter changes to 0.26. Near the percolation threshold, the amount of mobile Li species deduced by (7)Li NMR spectroscopy is lower than that derived from structural formulas but higher than deduced from dc conductivity measurements. Conductivity values have been explained by Monte Carlo simulations, which assume a random walk for Li ions in the conduction network of the perovskite. In these simulations, distribution of vacancies conforms to structural models deduced from ND experiments.  相似文献   

9.
通过机械活化将快离子导体Li3 V2(PO4)3包覆在LiFePO4 表面, 制备了性能优异的复合正极材料9LiFePO4@Li3 V2(PO4)3. 用XRD, SEM, HRTEM, EDS和电化学测试等手段研究了材料的物理化学性能. 结果表明, 包覆后的材料含有橄榄石结构的LiFePO4、单斜晶系的Li3 V2(PO4)3 和正交晶系的Li3 PO4; LiFePO4颗粒表面包覆了一层Li3 V2(PO4)3, 且部分V3+进入LiFePO4晶格内部, 使其晶格参数减小, 包覆后的LiFePO4的交换电流密度和锂离子扩散系数均提高了1个数量级. 电化学测试结果表明, 包覆后的LiFePO4的倍率性能及循环性能都得到显著改善, 在1C和2C倍率下, 包覆后的LiFePO4的首次放电比容量较包覆前分别提高了34.09%和78.97%, 经150次循环后容量保持率分别提高了27.77%和65.54%; 并且5C时容量为121.379 mA·h/g(包覆前LiFePO4在5C下几乎没有容量), 循环350次后的容量保持率高达94.03%.  相似文献   

10.
Li(3)V(2)(PO(4))(3)/graphene nanocomposites have been firstly formed on reduced graphene sheets as cathode material for lithium batteries. The nanocomposites synthesized by the sol-gel process exhibit excellent high-rate and cycling stability performance, owing to the nanoparticles connected with a current collector through the conducting graphene network.  相似文献   

11.
锂离子传导材料Li1.3Ti1.7Al0.3(PO4)3是具有NASICON结构的功能材料, 与Na+进行离子交换具有选择性高的特性. 研究了在不同温度条件下NaCl和LiCl水溶液中Li1.3Ti1.7Al0.3(PO4)3上的Na/Li离子交换行为. 实验结果表明, 升高温度能显著提高Li1.3Ti1.7Al0.3(PO4)3的Na/Li交换反应速率, 提高LiCl中杂质Na的分离效果.  相似文献   

12.
A red-emitting phosphor, Eu(3+)-doped Ca(9)LiGd(2/3)(PO(4))(7), was synthesized by the conventional high-temperature solid-state reaction. X-ray powder diffraction (XRD) analyses confirmed the pure crystalline phase of Whitlockite-type structure. The excitation spectra of Eu(3+) doped Ca(9)LiGd(2/3)(PO(4))(7) were measured in the VUV and UV region indicating an efficient energy transfer process from the host and Gd(3+) to Eu(3+) ions. Upon excitation with VUV and UV radiation, the phosphor showed strong red emission around 611 nm corresponding to the forced electric dipole (5)D(0)→(7)F(2) transition of Eu(3+) ions. The VUV- and UV-excited luminescence spectra of Ca(9)LiGd(2/3)(PO(4))(7):Eu(3+) together with the dependence of the integrated emission intensities on the doping levels were investigated. The Eu(3+) ions were investigated by a tunable laser as an excitation source. The excitation spectra of (7)F(0)→(5)D(0) transitions suggest that there are two families of inequivalent sites for Eu(3+) in this host. The concentration quenching and crystallographic site-occupancy of Eu(3+) ions in Ca(9)LiGd(2/3)(PO(4))(7) host were discussed on the basis of the site selective excitation and emission spectra, the luminescence decay and its crystal structure.  相似文献   

13.
以LiOH·H2O, NH4VO3, NH4H2PO4 和麦芽糖等为原料, 采用水热法合成了碳包覆的磷酸钒锂化合物, 考察了碳含量对材料电化学性能的影响. 利用XRD, TEM, SEM和恒流充放电测试等手段对产物的结构、 形貌和电化学性能进行表征. 结果表明, 在650℃煅烧的样品为单一纯相的单斜晶体结构. 晶体颗粒分布为100~300 nm, 粒度分散均匀, 分散性良好, 无团聚现象, 且在颗粒表面包覆了一层无定形碳, 这有利于改善材料的导电率. 含碳量为10.23%的样品, 在倍率1.0C的电流密度下, 在3.0~4.3 V电压范围内, 样品的首次放电比容量高达118.8 mA·h/g, 循环15圈后放电比容量为115.1 mA·h/g, 容量保持率为96.88%.  相似文献   

14.
The hydrothermal syntheses of a family of new alkali-metal/ammonium vanadium(V) methylphosphonates, M(VO(2))(3)(PO(3)CH(3))(2) (M = K, NH(4), Rb, Tl), are described. The crystal structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) have been determined from single-crystal X-ray data. Crystal data: K(VO(2))(3)(PO(3)CH(3))(2), M(r) = 475.93, trigonal, R32 (No. 155), a = 7.139(3) ?, c = 19.109(5) ?, Z = 3; NH(4)(VO(2))(3)(PO(3)CH(3))(2), M(r) = 454.87, trigonal, R32 (No. 155), a = 7.150(3) ?, c = 19.459(5) ?, Z = 3. These isostructural, noncentrosymmetric phases are built up from hexagonal tungsten oxide (HTO) like sheets of vertex-sharing VO(6) octahedra, capped on both sides of the V/O sheets by PCH(3) entities (as [PO(3)CH(3)](2-) methylphosphonate groups). In both phases, the vanadium octahedra display a distinctive two short + two intermediate + two long V-O bond distance distribution within the VO(6) unit. Interlayer potassium or ammonium cations provide charge balance for the anionic (VO(2))(3)(PO(3)CH(3))(2) sheets. Powder X-ray, TGA, IR, and Raman data for these phases are reported and discussed. The structures of K(VO(2))(3)(PO(3)CH(3))(2) and NH(4)(VO(2))(3)(PO(3)CH(3))(2) are compared and contrasted with related layered phases based on the HTO motif.  相似文献   

15.
Shi L  Li J  Yu J  Li Y  Ding H  Xu R 《Inorganic chemistry》2004,43(8):2703-2707
A new manganese(II)-substituted aluminophosphate, [C(6)N(2)H(14)]0.5.[MnAl(3)(PO(4))(4)(H(2)O)(2)], denoted as MnAPO-14, has been synthesized hydrothermally in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) as the structure-directing agent. Its structure is determined by single-crystal X-ray diffraction analysis and further characterized by X-ray powder diffraction, ICP, and TG analyses. The structure of MnAPO-14 is built up by MnO(4)(H(2)O)(2) octahedra, AlO(4) tetrahedra, and PO(4) tetrahedra via Al-O-P and Mn-O-P linkages. Its framework is analogous to that of aluminophosphate zeotype AFN in which 25% of the aluminum sites are replaced by Mn(II) atoms. The diprotonated DABCO cations reside in the eight-membered ring channels. Computational simulations indicate that the substitution site of Mn to Al is determined by the host-guest interaction. Crystal data: [C(6)N(2)H(14)]0.5.[MnAl(3)(PO(4))(4)(H(2)O)(2)], triclinic P1 (No. 2), a = 9.5121(4) A, b = 9.8819(3) A, c = 12.1172(4) A, alpha = 70.533(2) degrees, beta = 73.473(2) degrees, gamma = 82.328(2) degrees, Z = 2, R(1) = 0.0586 (I > 2 sigma(I)), and wR(2) = 0.1877 (all data).  相似文献   

16.
研究了用功能材料Li2Mg2Si4O10F2 (LHT)、H2Mn8O16•1.4H2O (CRYMO)和Li1.3Ti1.7Al0.3(PO4)3 (LTAP)分别去除高浓度氯化锂水溶液中的杂质Fe3+、K+和Na+.实验结果表明,这几种功能材料分别对溶液中的杂质Fe3+、K+和Na+有很高的选择性,除杂效果明显.分析和研究了这几种功能材料在高浓度氯化锂水溶液中分别与Fe3+、K+和Na+的交换行为.结果表明,在高浓度氯化锂溶液中这几种功能材料与杂质交换的动力学行为可近似用JMAK方程描述.  相似文献   

17.
The new compounds Li(2-x)Na(x)Ni[PO(4)]F (x = 0.7, 1, and 2) have been synthesized by a solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data. Li(1.3)Na(0.7)Ni[PO(4)]F crystallizes with the orthorhombic Li(2)Ni[PO(4)]F structure, space group Pnma, a = 10.7874(3), b = 6.2196(5), c = 11.1780(4) ? and Z = 8, LiNaNi[PO(4)]F crystallizes with a monoclinic pseudomerohedrally twinned structure, space group P2(1)/c, a = 6.772(4), b = 11.154(6), c = 5.021(3) ?, β = 90° and Z = 4, and Na(2)Ni[PO(4)]F crystallizes with a monoclinic twinned structure, space group P2(1)/c, a = 13.4581(8), b = 5.1991(3), c = 13.6978(16) ?, β = 120.58(1)° and Z = 8. For x = 0.7 and 1, the structures contain NiFO(3) chains made up of edge-sharing NiO(4)F(2) octahedra, whereas for x = 2 the chains are formed of dimer units (face-sharing octahedra) sharing corners. These chains are interlinked by PO(4) tetrahedra forming a 3D framework for x = 0.7 and different Ni[PO(4)]F layers for x = 1 and 2. A sodium/lithium disorder over three atomic positions is observed in Li(1.3)Na(0.7)Ni[PO(4)]F structure, whereas the alkali metal atoms are well ordered in between the layers in the LiNaNi[PO(4)]F and Na(2)Ni[PO(4)]F structures, which makes both compounds of great interest as potential positive electrodes for sodium cells.  相似文献   

18.
The Pechini type polymerizable complex decomposition method is employed to prepare LiTi(2)(PO(4))(3) at 1000 °C in air. High energy ball milling followed by carbon coating by the glucose-method yielded C-coated nano-LiTi(2)(PO(4))(3) (LTP) with a crystallite size of 80(±5) nm. The phase is characterized by X-ray diffraction, Rietveld refinement, thermogravimetry, SEM, HR-TEM and Raman spectra. Lithium cycling properties of LTP show that 1.75 moles of Li (~121 mA h g(-1) at 15 mA g(-1) current) per formula unit can be reversibly cycled between 2 and 3.4 V vs. Li with 83% capacity retention after 70 cycles. Cyclic voltammograms (CV) reveal the two-phase reaction mechanism during Li insertion/extraction. A hybrid electrochemical supercapacitor (HEC) with LTP as negative electrode and activated carbon (AC) as positive electrode in non-aqueous electrolyte is studied by CV at various scan rates and by galvanostatic cycling at various current rates up to 1000 cycles in the range 0-3 V. Results show that the HEC delivers a maximum energy density of 14 W h kg(-1) and a power density of 180 W kg(-1).  相似文献   

19.
Xie M  Tao Y  Huang Y  Liang H  Su Q 《Inorganic chemistry》2010,49(24):11317-11324
The VUV-vis spectroscopic properties of Tb(3+) activated fluoro-apatite phosphors Ca(6)Ln(2-x)Tb(x)Na(2)(PO(4))(6)F(2) (Ln = Gd, La) were studied. The results show that phosphors Ca(6)Gd(2-x)Tb(x)Na(2)(PO(4))(6)F(2) with Gd(3+) ions as sensitizers have intense absorption in the VUV range. The emission color of both phosphors can be tuned from blue to green by changing the doping concentration of Tb(3+) under 172 nm excitation. The visible quantum cutting (QC) via cross relaxation between Tb(3+) ions was observed in cases with and without Gd(3+). Though QC can be realized in phosphors Ca(6)La(2-x)Tb(x)Na(2)(PO(4))(6)F(2), we found that Gd(3+)-containg phosphors have a higher QC efficiency, confirming that the Gd(3+) ion indeed plays an important role during the quantum cutting process. In addition, the energy transfer process from Gd(3+) to Tb(3+) as well as (5)D(3)-(5)D(4) cross relaxation was investigated and discussed in terms of luminescence spectra and decay curves.  相似文献   

20.
采用溶胶凝胶/碳热还原法合成了锂离子电池正极材料Li3V2(PO4)3及其掺Ti化合物Li3-2x(V1-xTix)2-(PO4)3. 电化学测试结果表明, 经Ti4+离子掺杂后材料的充放电性能及循环性能明显提高. 与纯相Li3V2(PO4)3在3.58、3.67和4.08 V出现三个平台相比, 掺杂后材料的前两个平台发生简并且平台趋于模糊的倾斜状态. 这种趋势随掺杂量的增大而增强. 差热分析(DTA)表明掺杂生成了稳定的酌相产物. 采用X射线衍射和Rietveld方法表征了化合物的晶体结构, 结果表明, 三个不同位置Li的不完全占据导致晶体中产生阳离子空穴, 使材料在常温下的离子电导率提高了3个数量级. 锂离子混排提高了样品的电导率和充放电比容量.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号