首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new monomer, 1,1′-bis(dimethylaminodimethylsilyl)ferrocene, was synthesized by two routes and polymerized with three aryl disilanols: dihydroxydiphenylsilane, 1,4-bis(hydroxydimethylsilyl)benzene, and 4,4′-bis(hydroxydimethylsilyl)biphenyl, yielding three different polysiloxanes. Melt polymerizations carried out at 1 torr pressure and 100°C resulted in the highest molecular weight polymers. Intramolecular cyclization competed with intermolecular chain extension in polymerization of the bis(aminosilane) with dihydroxydiphenylsilane, resulting in isolation of a bridged derivative, 1,3,5-trisila-2,4-dioxa-1,1,5,5-tetramethyl-3,3-diphenyl[5]ferrocenophane. Cyclization did not compete significantly during the formation of polymers from this bisaminosilane and the two remaining diols, as evidenced by higher yields and greater molecular weights. These polymers could be cast as tough flexible films, and fibers could be drawn from their melts. TGA and DSC data showed the polymer formed from 1,1′-bis(dimethylaminodimethylsilyl)ferrocene and 1,4-bis(hydroxydimethylsilyl)benzene to be at least as thermally stable as an arylene siloxane polymer which differed from the ferrocenylsiloxane structure only in the replacement of the ferrocene moiety with a p-substituted phenylene linkage. The ferrocene-containing polymers were generally hydrolytically stable under conditions of refluxing THF–H2O(10 : 1) for 1 hr. The polymer-forming reaction was found to follow second-order kinetics, and the specific rate constants for formation of two of the polymers were measured.  相似文献   

2.
Six styrene derivatives containing electron-withdrawing groups were synthesized and polymerized with anionic initiators in THF to afford stable anionic living polymers. The electron-withdrawing substituents are N,N-dialkylamide(1), N-alkylimino(2), oxazoline(3), tert-butyl ester(4), N,N-dialkylsulfonamide(5) and cyano(6) moieties. The polymers obtained have predictable molecular weights and narrow molecular weight distributions. The respective postpolymerizations proceeded with quantitative efficiency indicating that each polymer chain end retained the propagating reactivity. However, the resulting living polymers could not initiate the polymerizations of styrene and isoprene. On the other hand, the styrene derivatives(5 and 6) were polymerized with weak nucleophilic initiators, such as living polymer of tert-butyl methacrylate. These results suggest that the electron-withdrawing groups stabilize the living ends and also activate the respective monomers for anionic polymerization. The substitution effect reflects on the 13C NMR chemical shift of β-carbon of each vinyl group. The signal of the β-carbon appeared at lower magnetic field than that of styrene indicating electron deficiency on the carbon-carbon double bond of these monomers.  相似文献   

3.
Styrene has been polymerized thermally at 60°C in the presence of low concentrations of vinylferrocene and in the presence and absence of 2,2′-azobisisobutyronitrile (AIBN). The polymerizations were studied in bulk and also in benzene solution. The thermal polymerization of styrene in the presence of ethylferrocene, but without added AIBN or solvent, was also examined. The bulk polymerizations exhibited high initial rates of polymerization followed by a decrease in rate. Initial rates of polymerization for bulk polymerizations in the absence of AIBN have been interpreted by means of a kinetic scheme involving propagation with styrene participating in a specific interaction with the ferrocene derivative and some kinetic parameters associated with this scheme have been evaluated. The decrease in the rate of polymerization is due to the formation of a retarder. The benzene solution polymerizations fitted a simple kinetic scheme and the transfer constant for vinylferrocene with respect to polystyryl radicals Cs, has been evaluated as 1.98 × 10?3.  相似文献   

4.
The polymerization of methyl 2-(ω-methoxyoligoethleneoxymethyl)acrylates, which were synthesized from reactions of methyl 2-bromomethylacrylate with ω-methoxyoligoethylene glycol, was investigated. All these monomers polymerized readily to high molecular weight despite expectation of the considerable steric hindrance against propagation. No influence of ceiling temperature was observed. The 2-(2-methoxyethyleneoxymethyl)acrylate exhibited similar reactivities to methyl 2-alkoxymethylacrylate reported previously in copolymerization with styrene and methyl methacrylate. The homopolymers synthesized, except for those from methyl 2-methoxymethyl- and 2-(2-methoxyethyleneoxymethyl)acrylates, were soluble in water, and all were soluble in benzene. These polymers were thermally less stable than poly(methyl methacrylate) as confirmed by thermogravimetric analysis, and all showed glass transition temperatures below 0°C. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
2‐[(N‐Benzyl‐N‐methylamino)methyl]‐1,3‐butadiene (BMAMBD), the first asymmetric tertiary amino‐containing diene‐based monomer, was synthesized by sulfone chemistry and a nickel‐catalyzed Grignard coupling reaction in high purity and good yield. The bulk and solution free‐radical polymerizations of this monomer were studied. Traditional bulk free‐radical polymerization kinetics were observed, giving polymers with 〈Mn〉 values of 21 × 103 to 48 × 103 g/mol (where Mn is the number‐average molecular weight) and polydispersity indices near 1.5. In solution polymerization, polymers with higher molecular weights were obtained in cyclohexane than in tetrahydrofuran (THF) because of the higher chain transfer to the solvent. The chain‐transfer constants calculated for cyclohexane and THF were 1.97 × 10?3 and 5.77 × 10?3, respectively. To further tailor polymer properties, we also completed copolymerization studies with styrene. Kinetic studies showed that BMAMBD incorporated into the polymer chain at a faster rate than styrene. With the Mayo–Lewis equation, the monomer reactivity ratios of BMAMBD and styrene at 75 °C were determined to be 2.6 ± 0.3 and 0.28 ± 0.02, respectively. Altering the composition of BMAMBD in the copolymer from 17 to 93% caused the glass‐transition temperature of the resulting copolymer to decrease from 64 to ?7 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3227–3238, 2001  相似文献   

6.
The polymerization of 2,2,2-trifluoroethyl vinyl ether by six different catalyst systems was examined. Low-temperature studies (?78°C) with boron trifluoride etherate catalyst in hydrocarbon and chlorinated solvents slowly yielded low molecular weight polymers which were amorphous and noncrystallizable upon cold drawing. Under similar conditions, polymerizations with boron trifluoride gas were spontaneous, quantitative, and gave relatively high molecular weight, form-stable, amorphous polymer. Heterogeneous polymerizations with chromium trioxide crystals in toluene at 68°C and bulk reactions with ethylmagnesium bromide–carbon tetrachloride catalyst at 40°C failed to produce polymer. Room temperature runs with triisobutylaluminum–titanium tetrachloride catalyst gave amorphous, tacky material. Aluminum hexahydrosulfate heptahydrate (AHS) initiated polymerizations conducted at 25 and 60°C gave low yields of mixtures of amorphous and crystalline polymers, the ratio depending upon the polymerization solvent employed. The infrared spectra and x-ray diffraction intensity curves of crystalline and amorphous poly(trifluoroethyl vinyl ether) are reported and compared herein for the first time.  相似文献   

7.
The reactivity of 1-phenylbutadiene (1-PBD) in cationic polymerization and the monomer structure were investigated. 1-PBD polymerized at ?78°C in several solvents initiated by cationic catalysts such as stannic chloride and tungsten hexachloride. The polymerizations proceeded predominantly via 3,4-type propagation mode, and gave low molecular weight polymers. More than one double bond of 1-PBD was consumed during the polymerizations, probably due to transfer and cyclization reactions. 1-PBD was several times as reactive as styrene and trans-1,3-pentadiene in copolymerizations. The Hammett plots of reactivities of ring-substituted 1-PBD in cationic polymerization gave the p-value of -1.20, which is 0.6 times that of styrene. The 1H and 13C NMR chemical shifts of ring-substituted 1-PBD were measured and discussed in relation to the reaction mechanism.  相似文献   

8.
Chain-transfer reactions to alkylbenzenes were investigated in the polymerizations of phenylacetylene and styrene by WCl6 in benzene at 30°C. In the polymerization of phenylacetylene, alkylbenzenes did not work as chain-transfer agents, and further ethyl iodide was not a terminating agent. These findings suggest that the polymerization of phenylacetylene by WCl6 differs from the conventional cationic or anionic mechanisms. On the other hand, the ability of alkylbenzenes as chain-transfer agents in the polymerization of styrene by WCl6 increased in the following order: toluene < p-xylene < m-xylene < o-xylene. This order is similar to that in the polymerization by SnCl4. These results indicate that the polymerization of styrene by WCl6 proceeds by a conventional cationic mechanism.  相似文献   

9.
Two diastereomeric derivatives of norbornene, dimethyl (1R,2R,3S,4S)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate and dimethyl (1R,2S,3S,4S)-bicyclo[2.2.1]hept-5-ene-2,3-dicarboxylate, were synthesized and polymerized using ring-opening metathesis polymerization (ROMP). For comparative purposes, diastereomeric derivatives of Dewar benzene, dimethyl (1R,2S,3R,4S)-bicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate and dimethyl (1R,2S,3S,4S)-bicyclo[2.2.0]hex-5-ene-2,3-dicarboxylate, were also synthesized and polymerized using ROMP. The polymerization reactions proceeded in a controlled manner as evidenced in part by linear relationships between the monomer-to-catalyst feed ratios and the molecular weights of the polymer products. Chain extension experiments were also conducted which facilitated the formation of block copolymers. Although the poly(norbornene) derivatives exhibited glass transition temperatures that were dependent on their monomer stereochemistry (cis: 115°C vs. trans: 125°C), more pronounced differences were observed upon analysis of the polymers derived from Dewar benzene (cis: 70°C vs. trans: 95°C). Likewise, microphase separation was observed in block copolymers that were prepared using the diastereomeric monomers derived from Dewar benzene but not in block copolymers of the norbornene-based diastereomers. The differential thermal properties were attributed to the relative monomer sizes as reducing the distances between the polymer backbones and the pendant stereocenters appeared to enhance the thermal effects.  相似文献   

10.
A reversible addition–fragmentation chain transfer (RAFT) agent, 2‐cyanoprop‐2‐yl 1‐dithionaphthalate (CPDN), was synthesized and applied to the RAFT polymerization of glycidyl methacrylate (GMA). The polymerization was conducted both in bulk and in a solvent with 2,2′‐azobisisobutyronitrile (AIBN) as the initiator at various temperatures. The results for both types of polymerizations showed that GMA could be polymerized in a controlled way by RAFT polymerization with CPDN as a RAFT agent; the polymerization rate was first‐order with respect to the monomer concentration, and the molecular weight increased linearly with the monomer conversion up to 96.7% at 60 °C, up to 98.9% at 80 °C in bulk, and up to 64.3% at 60 °C in a benzene solution. The polymerization rate of GMA in bulk was obviously faster than that in a benzene solution. The molecular weights obtained from gel permeation chromatography were close to the theoretical values, and the polydispersities of the polymer were relatively low up to high conversions in all cases. It was confirmed by a chain‐extension reaction that the AIBN‐initiated polymerizations of GMA with CPDN as a RAFT agent were well controlled and were consistent with the RAFT mechanism. The epoxy group remained intact in the polymers after the RAFT polymerization of GMA, as indicated by the 1H NMR spectrum. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2558–2565, 2004  相似文献   

11.
Anionic polymerizations of 1,1-dimethylsilacyclobutane, 1,1-diethylsilacyclobutane and 1-methyl-1-phenylsilacyclobutane were investigated. Addition of 5 mol % of butyllithium to a solution of 1,1-dimethylsilacyclobutane in THF-hexane (1 : 1) at −48°C provided poly(1,1-dimethylsilabutane) in 99% yield. Mn and Mw/Mn of the obtained polymer were 2400 and 1.10. This polymerization proceeded with a living nature. Mn increased in proportion as the yield of polymer increased. Addition of the second fresh feed of the monomer to the reaction mixture restarted polymerization of the second monomer at the same rate as in the initial stage. Addition of styrene to the living poly(1,1-dimethylsilabutane) provided a poly(1,1-dimethylsilabutane-b-styrene) block copolymer. It was also found that a polymerization of 1,1-diethylsilacyclobutane in THF-hexane at −48°C showed a living nature. In contrast, a polymerization of 1-methyl-1-phenylsilacyclobutane in THF at −78°C did not show a living nature. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3207–3216, 1997  相似文献   

12.
The ionic polymerization of substituted o‐quinodimethanes via thermal isomerization of benzocyclobutenes is described. In the cationic polymerizations of 1‐methoxy‐o‐quinodimethane in the presence of various cationic initiators at 110 °C for 12 h, chain transfer reactions also considerably underwent besides the polymerization. Meanwhile, cationic polymerizations of 1‐trimethylsilyloxy‐o‐quinodimethane under the same conditions gave good yields of the corresponding polymer. Anionic polymerizations of 1‐cyano‐o‐quinodimethane in the presence of anionic initiators such as n‐BuLi or t‐BuOK were performed at various temperatures for 12 h. Good yields of hexane‐insoluble polymer, which was produced by anionic polymerization of corresponding o‐quinodimethane as an intermediate, were obtained above 120 °C. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 844–850, 2008  相似文献   

13.
The free‐radical homopolymerization and copolymerization behavior of N‐(2‐methylene‐3‐butenoyl)piperidine was investigated. When the monomer was heated in bulk at 60 °C for 25 h without an initiator, about 30% of the monomer was consumed by the thermal polymerization and the Diels–Alder reaction. No such side reaction was observed when the polymerization was carried out in a benzene solution with 1 mol % 2,2′‐azobisisobutylonitrile (AIBN) as an initiator. The polymerization rate equation was found to be Rp ∝ [AIBN]0.507[M]1.04, and the overall activation energy of polymerization was calculated to be 89.5 kJ/mol. The microstructure of the resulting polymer was exclusively a 1,4‐structure that included both 1,4‐E and 1,4‐Z configurations. The copolymerizations of this monomer with styrene and/or chloroprene as comonomers were carried out in benzene solutions at 60 °C with AIBN as an initiator. In the copolymerization with styrene, the monomer reactivity ratios were r1 = 6.10 and r2 = 0.03, and the Q and e values were calculated to be 10.8 and 0.45, respectively. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1545–1552, 2003  相似文献   

14.
The results of quantitative studies of the rates of free-radical polymerization of vinyl ferrocene indicate that the latter has polymerization characteristics similar to those of styrene. The rates of homopolymerization of these two monomers in benzene at 70°C. were measured with the use of azobisisobutyronitrile as catalyst. The rate constants (k = Rp/[M][I]1/2) are kVF = (1.1 ? 1.8) × 10?4, kSTY = 1.65 × 10?4. Small amounts of vinyl ferrocene and styrene have similar effects on the rates of polymerizations of methyl methacrylate and ethyl acrylate and on the molecular weights of the resulting polymer. Polystyrene and poly(vinyl ferrocene) with similar molecular weights are isolated from polymerizations carried out under identical conditions. The rates of copolymerization of vinyl ferrocene—methyl methacrylate, vinyl ferrocene—styrene, and styrene—methyl methacrylate were determined by following the disappearance of monomers by means of gas chromatographic analyses. The relative reactivity for vinyl ferrocene is slightly lower than that for styrene.  相似文献   

15.
The synthetic details of solution polymerization in benzene and bulk polymerization of vinylferrocene are reported. In benzene solutions, with azobisisobutyronitrile (AIBN) as the initiator, small yields of low-polydispersity low molecular weight (M?n ? 5000) polyvinylferrocene is obtained. However, high yields can be obtained by continuous or multiple AIBN addition. Higher molecular weight polymers and binodal polymers can be obtained as the monomer concentration is increased. In bulk polymerizations, yields of 80% can be obtained. The molecular weight increases as temperature decreases from 80 to 60°C in bulk polymerizations, and an increasing amount of insoluble polymer results. The soluble portion is often binodal, the higher molecular weight node consisting of an increasingly branched structure. Lower molecular weight polymer was readily fractionated into narrow fractions from benzene–methanol systems, but higher molecular weight polymer proved impossible to fractionate into narrow fractions due to branching.  相似文献   

16.
Initiation of polymerization in styrene oil-in-water microemulsions by water-soluble potassium persulfate of oil-soluble 2,2′-azobis-(2-methyl butyronitrile) at 70°C gave stable latexes which were bluish and less translucent than the original microemulsions. The effects of initiator concentration, polymerization temperature, and monomer concentration on the kinetics, particle size distributions, and molecular weight distributions were investigated. The kinetics of polymerization were measured by dilatometry. In all cases, the polymerization rate shows only two intervals, which increased to a maximum and then decreased. There was no apparent constant rate period and no gel effect. A longer nucleation period was found for polymerizations initiated by potassium persulfate as compared to 2,2′-azobis-(2-methyl butyronitrile). The small latex particle size (20–30 nm) and high polymer molecular weight (1–2 × 106) implies that each latex particle consists of two or three polystyrene molecules. The maximum polymerization rate and number of particles varied with the 0.47 and 0.40 powers of potassium persulfate concentration, and the 0.39 and 0.38 powers of 2,2′-azobis-(2-methyl butyronitrile) concentration, respectively. This is consistent with the 0.4 power predicted by Smith–Ewart Case 2 kinetics. Microemulsion polymerizations of styrene–toluene mixtures at the same oil-water phase ratio gave lower polymerization rates and lower molecular weights, but the same latex particle size as with styrene alone. A mechanism is proposed, which comprised initiation and polymerization in the microemulsion droplets, by comparing the kinetics of microemulsion polymerization with conventional emulsion and miniemulsion polymerization systems.  相似文献   

17.
2-Vinylthiophene was found to undergo thermal polymerization. With benzene as diluent, the overall rate of polymerization was proportional to the 2.5 power of monomer concentration, suggesting that the thermal initiation is a termolecular process. The following Arrhenius equation was obtained from the polymerization data for the range 55–100°C: The activation energy of the thermal initiation was estimated to be 28.2 kcal/mole, which was similar to those values obtained for styrene and 2-vinylfuran. When a dilute solution of the monomer in bromobenzene was heated in an ampoule at 151°C, a dimer, mp 82°C, was obtained in a good yield. The spectroscopic data indicated that the dimer was a Diels-Alder type adduct. The initiation of the thermal polymerization was considered to involve hydrogen abstraction by monomer from the Diels-Alder dimer, in common with the initiation of other vinylaromatic monomers.  相似文献   

18.
The propagation kinetics of isoprene radical polymerizations in bulk and in solution are investigated via pulsed laser initiated polymerizations and subsequent polymer analyses via size‐exclusion chromatography, the PLP‐SEC method. Because of low polymerization rate and high volatility of isoprene, the polymerizations are carried out at elevated pressure ranging from 134 to 1320 bar. The temperatures are varied between 55 and 105 °C. PLP‐SEC yields activation parameters of kp (Arrhenius parameters and activation volume) over a wide temperature and pressure range that allow for the calculation of kp at technically relevant ambient pressure conditions. The kp values determined are very low, e.g., 99 L mol?1 s?1 at 50 °C, which is even lower than the corresponding value for styrene polymerizations. The presence of a polar solvent results in a slight increase of kp compared to the bulk system. The kp values reported are important for determining rate coefficients of other elemental reactions from coupled parameters as well as for modeling isoprene free‐radical polymerizations and reversible deactivation radical polymerization with respect to tailored polymer properties and optimizing the polymerization processes.  相似文献   

19.
The homopolymer of 4‐chloromethylstyrene (P1) and its copolymers with styrene (in various mole ratios) were synthesized by bulk and solution free radical polymerizations, respectively, at 70 ± 1°C using α,α′‐azobis(isobutyronitrile) as an initiator. Lithiation of these soluble polymers in THF at −78°C was done and reacted with electrophiles such as tert‐BuMe2Si, Et3Si, and Me3SiCH2 in the presence of 4,4′‐di‐tert‐butylbiphenyl (DTBB) as a catalyst to produce modified polystyrene. In the other way, trimethylsilylmethyl lithium substitute as a nucleophile was covalently linked to the homopolymer and copolymer. The polymers were characterized by IR, 1H NMR, 13C NMR, differential scanning calorimetry (DSC), and gel permeation chromatography. DSC showed that incorporation of silyl substitute in the side chains of homopolymer and copolymers increases the rigidity of the polymers and, subsequently, their glass transition temperature. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:414–420, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20314  相似文献   

20.
The 2,2,6,6‐tetramethyl‐1‐piperidinyloxy (TEMPO)‐mediated stable free radical polymerization of styrene in miniemulsion at 100 °C is demonstrated. Although this temperature is 20–35 °C lower than typical temperatures used for TEMPO‐mediated polymerizations, reasonable reaction rates were achieved by the addition of ascorbic acid or a free radical initiator. More importantly, the living character of the chains was preserved; the degree of polymer “livingness” was comparable to polymerizations conducted at 135 °C. Polydispersities were broader than that observed in well‐controlled systems, ranging from ~1.4–1.6, and consistent with expectations for systems having a low activation rate. The results are significant for two reasons. They will facilitate TEMPO‐mediated minemulsion polymerizations in nonpressurized (or minimally pressurized) reactors, and they reveal the potential to expand the traditional temperature range of TEMPO and possibly other nitroxides in bulk, solution, and miniemulsion. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 232–242, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号