首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 418 毫秒
1.
The possibility of reducing fibrinogen adsorption to solid surfaces by competitive adsorption of cellulose ethers (EHEC, HEC) was investigated. The surface concentration of fibrinogen adsorbed onto hydrophilic and hydrophobic (methylized) glass was measured with an enzyme-linked immunosorbent assay. The immunoassay was calibrated by ellipsometry, using the initial mass transport limitation of adsorption for calculations of the maximum amount of adsorbed protein.At a hydrophobic surface, the presence of cellulose polymers caused a decrease of the adsorption of fibrinogen. The hydrophobic EHEC (cloud point 35°C) was most efficient and abolished surface-adsorption of the protein.At a hydrophilic surface, positive cooperativity was seen between fibrinogen and cellulose polymers. The hydrophilic HEC (cloud point >100°C) gave the most prominent effect.The results indicate that the affinity between a water soluble polymer or protein and a solid surface is not the only factor determining surface adsorption. The finding that there may be both positive and negative cooperativity in the adsorption of polymers shows the importance of polymer compatibility in layers of adsorbed polymers.  相似文献   

2.
Adsorption and flocculation by polymers and polymer mixtures   总被引:3,自引:0,他引:3  
Polymers of various types are in widespread use as flocculants in several industries. In most cases, polymer adsorption is an essential prerequisite for flocculation and kinetic aspects are very important. The rates of polymer adsorption and of re-conformation (relaxation) of adsorbed chains are key factors that influence the performance of flocculants and their mode of action. Polyelectrolytes often tend to adopt a rather flat adsorbed configuration and in this state their action is mainly through charge effects, including ‘electrostatic patch’ attraction. When the relaxation rate is quite low, particle collisions may occur while the adsorbed chains are still in an extended state and flocculation by polymer bridging may occur. These effects are now well understood and supported by much experimental evidence. In recent years there has been considerable interest in the use of multi-component flocculants, especially dual-polymer systems. In the latter case, there can be significant advantages over the use of single polymers. Despite some complications, there is a broad understanding of the action of dual polymer systems. In many cases the sequence of addition of the polymers is important and the pre-adsorbed polymer can have two important effects: providing adsorption sites for the second polymer or causing a more extended adsorbed conformation as a result of ‘site blocking’.  相似文献   

3.
The adsorption of hydroxyethylcellulose (HEC), ethyl(hydroxyethyl)cellulose (EHEC), and their hydrophobically modified counterparts HM-HEC and HM-EHEC has been studied on planar gold and citrate-covered gold surfaces by means of quartz crystal microbalance with dissipation monitoring (QCM-D), and on citrate-covered gold particles with the aid of dynamic light scattering (DLS). The QCM-D results indicate that larger amounts of polymer are adsorbed from aqueous solutions of HM-HEC and HM-EHEC on both substrates than from solutions of their unmodified analogues. The adsorption affinity for all the polymers, except EHEC, is higher on the citrate-covered surfaces than on the bare gold substrate. This indicates that more adsorption sites are activated in the presence of the citrate layer. The experimental adsorption data for all the polymers can be described fairly well by the Langmuir adsorption isotherm. However, at very low polymer concentrations significant deviations from the model are observed. The value of the hydrodynamic thickness of the adsorbed polymer layer (delta h), determined from DLS, rises with increasing polymer concentration for all the cellulose derivatives; a Langmuir type of isotherm can be used to roughly describe the adsorption behavior. Because of good solvent conditions for HEC the chains extend far out in the bulk at higher concentrations and the value of delta h is much higher than that of HM-HEC. The adsorption of EHEC and HM-EHEC onto gold particles discloses that the values of delta h are considerably higher for the hydrophobically modified cellulose derivative, and this finding is compatible with the trend in layer thickness estimated from the QCM-D measurements.  相似文献   

4.
It has been known that pre-adsorbed polymers on a solid surface can block some adsorption sites for a post-added polymer on the same substrate. If the charge of pre-adsorbed polymer is the same as that of post-adsorbed polymer, the repulsion force between these two polymers will change not only the polymer adsorption amount but also the conformation and the properties of the polymer on the substrate. The site blocking effect is a possible mechanism in many commonly used flocculation programs. However, no research has been able to confirm the proposed theory of its effects on adsorbed polymer conformation. This work reports, for the first time, detailed information regarding the effects of site blocking on an adsorbed polymer's conformation using scanning probe microscopy. Using both polymers and nanoparticles as site blocking additives, experiments were performed on single cationic polyacrylamide polymers. This work illustrates that the increased thickness in adsorbed polymer layers, reported by previous researchers, is due to a dramatic increase in the tail portion of the adsorbed polymer. The previously postulated increase in adsorbed polymer loop lengths was not present in these experiments.  相似文献   

5.
The adsorption behavior of bottle-brush polymers with different charge/PEO ratio on silica was studied using optical reflectometry and QCM-D. The results obtained under different solution conditions clearly demonstrate the existence of two distinct adsorption mechanisms depending on the ratio of charge/PEO. In the case of low-charge density brush polymers (0-10 mol %), the adsorption occurs predominantly through the PEO side chains. However, the presence of a small amount of charge along the backbone (as low as 2 mol %) increases the adsorption significantly above that of the uncharged bottle-brush polymer in pure water. As the charge density of the brush polymers is increased to 25 mol % or larger the adsorption occurs predominantly through electrostatic interactions. The adsorbed layer structure was studied by measuring the layer dissipation using QCM-D. The adsorbed layer formed by the uncharged brush polymer dissipates only a small amount of energy that indicates that the brush lie along the surface, the scenario in which the maximum number of PEO side chains interact with the surface. The adsorbed layers formed by the low-charge density brush polymers (2-10 mol %) in water are more extended, which results in large energy dissipation, whereas those formed by the high-charge density brush polymers (50-100 mol %) have their backbone relatively flat on the surface and the energy dissipation is again low.  相似文献   

6.
Particles that are partially wetted by oil and water are known to adsorb at oil/water interfaces. By the same mechanism, particles that are partially wetted by two immiscible polymers should adsorb at the interface between those two polymers. However, since chemical differences between immiscible polymers are relatively modest, particle adsorption at polymer/polymer interfaces may be expected to be relatively uncommon. We have conducted experiments with several particle types added to two pairs of model polymers, polyisoprene/polydimethylsiloxane and polyisoprene/polyisobutylene. Contrary to our expectation, in every case, particles readily adsorbed at the polymer/polymer interfaces. We evaluated the Girifalco–Good theory as a means to predict the interfacial activity of the particles. The solid surface energy required by the Girifalco–Good theory was assumed to be equal to the critical surface tension, which was then found by float/sink tests. Our results suggest that this approach is not able to predict the observed interfacial activity of particles at polymer/polymer interfaces.  相似文献   

7.
Recent progresses in the self assembly of ultrathin polymer films are described. Bilayer membranes of polymeric hydrogen-bond networks are formed in water. Two-dimensional networks of organic and inorganic polymers are formed in cast films of synthetic bilayer membranes to give stable multilayer films upon removal of the matrices. The monolayer at the air-water interface constitutes suitable templates for 2D polymer networks, and it may be either removed or part of the 2D film. Successive adsorption of polycations and polyanions under carefully controlled conditions produces layered polyion complexes in the stepwise manner. Various polymer chains are epitaxially adsorbed onto graphite. All these results indicate that molecularly defined 2D polymer structures are readily available.  相似文献   

8.
Amphiphilic polymers can be used as tools to manipulate the behavior of reverse microemulsions. EPR spectroscopy employing the spin probe 5-doxyl stearic acid was used to study the adsorption of a comb type polymer (polymaleic anhydride octyl vinyl ether) and a diblock polymer (polybutadiene-ethylene oxide) onto reverse microemulsion droplets formed from Aerosol-OT/heptane/water. The findings indicate that the comb type polymer was adsorbed by the reverse microemulsion drops at low polymer concentrations causing a structural change of the micelle.  相似文献   

9.
Molecularly imprinted polymers bind their target compounds at binding sites. The binding sites are typically based on some type of functional group, such as carboxyl group. The total amount of such functional groups and their distribution into available and unavailable groups is not well known. The total binding capacity is usually indirectly determined from adsorption isotherms, which are measured much below the theoretical binding capacity. This work shows that in a variety of differently prepared, methacrylic acid based molecularly imprinted and nonimprinted polymers, all carboxylic groups used for the polymer synthesis are retained in the polymer, 80–90% of them can be accessed by strong bases and essentially the same amount can be used for adsorption of weak bases. This high level of adsorption can only be achieved, however, if the adsorbed weak base is strong enough, if the polymer is sufficiently elastic and if the solvent does not compete too strongly for the binding sites. These results may explain why the maximum binding capacities obtained from isotherm measurements are usually not equal to the total amount of available binding sites. This study confirms the usefulness of nonimprinted polymers at high loadings.  相似文献   

10.
In many cases, polymer adsorption is studied by measuring adsorption isotherms. Quite often it is found that the results are at variance with theoretical predictions. However, usually these adsorption isotherms are interpreted in terms of a single polymeric solute. Most polymers used in experimental studies are polydisperse and should be treated as mixtures. It is well established that the larger molecules in such mixtures adsorb preferentially over the smaller ones. In this paper we show that many discrepancies between polymer adsorption theory and experiment (e.g., the rounded shape of isotherms, the dependence of the adsorbance on adsorbent concentration, and the lack of desorption upon dilution) can be attributed to polydispersity. A quantitative analysis enables us to calculate isotherms for a polymer of arbitrary molecular weight distribution, provided the dependency of the plateau adsorbance on molecular weight is known. Experiments supporting the theory are reported. The fact that polymers do not desorb upon dilution with solvent is often regarded as a proof that polymer adsorption is irreversible. We show that, if a polydisperse sample is in equilibrium with an adsorbing surface, no detectable desorption may take place upon dilution. Therefore, the adsorption of polymers might well be reversible, even if desorption experiments would indicate apparent irreversibility.  相似文献   

11.
Monte Carlo simulations are reported to study the structure of polymers adsorbed from solution onto strongly attractive, perfectly smooth substrates. Six systems spanning a range of molecular weight distributions are investigated with a coarse-grained united atom model for freely rotating chains. By employing a global replica exchange algorithm and topology altering Monte Carlo moves, a range of monomer-surface attraction from weak (0.27kT) to strong (4kT) is simultaneously explored. Thus for the first time ever, equilibrium polymer adsorption on highly attractive surfaces is studied, with all adsorbed molecules displaying similar properties and statistics. The architecture of the adsorbed layers, including density profiles, bond orientation order parameters, radii of gyration, and distribution of the adsorbed chain fractions, is shown to be highly dependent on the polydispersity of the polymer phase. The homology of polymer chains, and the ergodicity of states explored by the molecules is in contrast to the metastable, kinetically constrained paradigm of irreversible adsorption. The structure of more monodisperse systems is qualitatively similar to experimental results and theoretical predictions, but result from very different chain conformations and statistics. The polydispersity-dependent behavior is explained in the context of the competition between polymers to make contact with the surface.  相似文献   

12.
Surface rheology of irreversibly bound hydrophobically modified poly(ethylene glycol) (PEG) polymers (HMPEG) on a dipalmitoylphosphatidylcholine (DPPC) monolayer is investigated to determine attributes that may contribute to immune recognition. Previously, three comb-graft polymers (HMPEG136-DP3, HMPEG273-DP2.5, and HMPEG273-DP5) adsorbed on liposomes were examined for their strength of adsorption and protection from complement binding. The data supported an optimal ratio between the hydrophilicity of the PEG polymer and the number of hydrophobic anchors. The HMPEG polymers have different polymer brush thicknesses (4.2-5.9 nm) and levels of cooperativity (2.5-5 hydrophobes). The results indicate that an increased viscous force (above 0.25 mN s/m) at the surface may enable the polymers to shield liposomes from protein interactions. Similar rheological behavior is shown for all polymer architectures at low polymer surface coverage (0.5 mg/m2, in the mushroom regime), whereas at high surface coverage (>0.5 mg/m2, in the brush regime), we observe a structural dependence of the surface viscous forces at 40 mN/m. This threshold correlates with a 92% decrease in complement protein binding for liposomes coated with 1 mg/m2 HMPEG273-DP5. This may suggest that surface viscous forces play a role in reducing complement protein binding.  相似文献   

13.
An in situ ATR-FTIR study of polyacrylamide adsorption at the talc surface   总被引:1,自引:0,他引:1  
The adsorption of a low molecular weight unmodified polyacrylamide (Polymer-N) and a hydroxyl-substituted polyacrylamide (Polymer-H) onto talc was studied using in situ particle film ATR-FTIR spectroscopy in the multiple internal reflection mode. Spectra of the adsorbed polymer were collected as a function of increasing concentration and as a function of time. Measurement of the peak intensities of the adsorbed polymer allowed adsorption isotherms and adsorption kinetics to be determined for both polymers. Langmuir adsorption isotherm analysis of in situ data yielded Gibbs free energies of adsorption (deltaG0(ads)) for Polymer-N and Polymer-H of -44.5 and -45.7 kJ/mol, respectively, which correlate well with similar values determined from ex situ adsorption isotherms. Kinetic analysis indicated that the adsorption of both polymers was a pseudo-first-order process. The apparent rate constants for Polymer-N and Polymer-H were 0.10 and 0.15 min(-1), respectively. Absence of spectral shifts in the spectra of adsorbed polymer is indicative of a hydrophobic interaction between the polyacrylamides and the talc surface.  相似文献   

14.
Quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to characterize the adsorption of the model proteins, bovine serum albumin (BSA) and fibronectin (FN), to polypyrrole doped with dextran sulfate (PPy-DS) as a function of DS loading and surface roughness. BSA adsorption was greater on surfaces of increased roughness and was above what could be explained by the increase in surface area alone. Furthermore, the additional mass adsorbed on the rough films was concomitant with an increase in the rigidity of the protein layer. Analysis of the dynamic viscoelastic properties of the protein adlayer reveal BSA adsorption on the rough films occurs in two phases: (1) arrival and initial adsorption of protein to the polymer surface and (2) postadsorption molecular rearrangement to a more dehydrated and compact conformation that facilitates further recruitment of protein to the polymer interface, likely forming a multilayer. In contrast, FN adsorption was independent of surface roughness. However, films prepared from solutions containing the highest concentration of DS (20 mg/mL) demonstrated both an increase in adsorbed mass and adlayer viscoelasticity. This is attributed to the higher DS loading in the conducting polymer film resulting in presentation of a more hydrated molecular structure indicative of a more unfolded and bioactive conformation. Modulating the redox state of the PPy-DS polymers was shown to modify both the adsorbed mass and viscoelastic nature of FN adlayers. An oxidizing potential increased both the total adsorbed mass and the adlayer viscoelasticity. Our findings demonstrate that modification of polymer physicochemical and redox condition alters the nature of protein-polymer interaction, a process that may be exploited to tailor the bioactivity of protein through which interactions with cells and tissues may be controlled.  相似文献   

15.
Simulations of simple models of polymer chains were carried out by the means of the dynamic Monte Carlo method. The model chains were confined to a simple cubic lattice. Three different chain architectures were studied: linear, star‐branched and ring chains. The polymer model chain interacted with an impenetrable surface with a simple contact attractive potential. It was found that size parameters of all these polymers obey scaling laws. The temperatures of the transitions from weakly to strongly adsorbed chain were determined. It was shown for weakly adsorbed chains that ring polymers are always ca. 50% more adsorbed than linear and star‐branched ones. The properties of adsorbed linear and star‐branched polymers are very similar in the length of chain and the strength of adsorption studied. Strongly adsorbed ring polymers are still more adsorbed but differences between all kinds of chains become less pronounced.  相似文献   

16.
The processes of adsorption of grafted copolymers onto negatively charged surfaces were studied using a dissipative quartz crystal microbalance (D-QCM) and ellipsometry. The control parameters in the study of the adsorption are the existence or absence on the molecular architecture of grafted polyethyleneglycol (PEG) chains with different lengths and the chemical nature of the main chain, poly(allylamine) (PAH) or poly(L-lysine) (PLL). It was found out that the adsorption kinetics of the polymers showed a complex behavior. The total adsorbed amount depends on the architecture of the polymer chains (length of the PEG chains), on the polymer concentration and on the chemical nature of the main chain. The comparison of the thicknesses of the adsorbed layers obtained from D-QCM and from ellipsometry allowed calculation of the water content of the layers that is intimately related to the grafting length. The analysis of D-QCM results also provides information about the shear modulus of the layers, whose values have been found to be typical of a rubber-like polymer system. It is shown that the adsorption of polymers with a charged backbone is not driven exclusively by the electrostatic interactions, but the entropic contributions as a result of the trapping of water in the layer structure are of fundamental importance.  相似文献   

17.
In acute lung injuries, inactivating agents may interfere with transfer (adsorption) of pulmonary surfactants to the interface between air and the aqueous layer that coats the interior of alveoli. Some ionic and nonionic polymers reduce surfactant inactivation in vitro and in vivo. In this study, we tested directly whether an ionic polymer, hyaluronan, or a nonionic polymer, polyethylene glycol, enhanced adsorption of a surfactant used clinically. We used three different methods of measuring adsorption in vitro: a modified pulsating bubble surfactometer; a King/Clements device; and a spreading trough. In addition we measured the effects of both polymers on surfactant turbidity, using this assay as a nonspecific index of aggregation. We found that both hyaluronan and polyethylene glycol significantly increased the rate and degree of surfactant material adsorbed to the surface in all three assays. Hyaluronan was effective in lower concentrations (20-fold) than polyethylene glycol and, unlike polyethylene glycol, hyaluronan did not increase apparent aggregation of surfactant. Surfactant adsorption in the presence of serum was also enhanced by both polymers regardless of whether hyaluronan or polyethylene glycol was included with serum in the subphase or added to the surfactant applied to the surface. Therefore, endogenous polymers in the alveolar subphase, or exogenous polymers added to surfactant used as therapy, may both be important for reducing inactivation of surfactant that occurs with various lung injuries.  相似文献   

18.
The temperature influence (15–35 °C) on the adsorption mechanism and conformation of nonionic polymers (polyethylene glycol (PEG), polyethylene oxide (PEO) and polyvinyl alcohol (PVA)) on the zirconium dioxide surface was examined. The applied techniques (spectrophotometry, viscosimetry, potentiometric titration and microelectrophoresis) allowed characterization of the changes in structure and thickness of polymer adsorption layers with the increasing temperature. The rise of temperature favours more stretched conformation of polymer chains on the ZrO2 surface, which results in higher adsorption and thicker adsorption layer. Moreover, these conformational changes of adsorbed macromolecules affect the electric (solid surface charge density) and electrokinetic (zeta potential) properties of the zirconia–polymer interface. The obtained data indicate that the polyvinyl alcohol adsorption has a greater influence on zirconia properties in comparison to that of PEG and PEO. It is due to the presence of acetate groups in the PVA macromolecules (degree of hydrolysis 97.5%), which undergo dissociation.  相似文献   

19.
In this study, we examined the influence of surfactants on the adsorption of polymers on cotton fibers. The extent of polymer adsorption on cotton was determined directly by means of fluorescence spectroscopy using fluorescently labeled polymers. The investigation of polymer adsorption in the presence of different types of surfactants and for a large range of differently structured polymers allows us to obtain a rather general picture of this important issue. Systematic relationships between the presence of surfactant and the type of polymer can be deduced but cannot be cast in simple terms such as electrostatic interaction but instead depend on the detailed interaction between the surfactant and polymer both in solution and adsorbed on the cotton surface. A particularly complex situation arises for the case of oppositely charged surfactant and polymer because of the possibility of precipitate formation. The study of such complex systems not only is of scientific interest but also is of great commercial interest because both polymers and surfactants are parts of detergent formulations and cotton is one of the most abundantly used materials for fabrics.  相似文献   

20.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号