首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cluster anion [HRu3(CO)11]- (1) reacts with dicyclohexylphosphine in THF solution to give the anionic derivative [HRu3(CO)8(PCy2)2]- (2), protonation of which yields the neutral cluster H2Ru3(CO)8(PCy2)2 (3) and, in the presence of excess phosphine, HRu3(CO)7(PCy2)3 (4). In protic methanol as reaction medium, the reaction of 1 with HPCy2 gives directly the neutral complex H2Ru3(CO)6(PCy2)2(HPCy2)2 (5), together with 4. The single-crystal structure X-ray analysis of 3 shows a closed triangular Ru3 framework. The electron count is in accordance with the EAN rule, but the structure analysis of 5 reveals an open, almost linear Ru3 skeleton, which is electron-deficient with respect to the EAN rule.  相似文献   

2.
The reaction of Pt(C2H4)2(PCy3) with (OC)4M(μ-H)(μ-PnPr2)Pt(CO)(PCy3, (1: M  Cr, Mo, W) occurs in a highly specific, kinetically controlled manner to give MPt22MPt-CO)(η2PtPt-H)(μ2MPt-PnPr2)(CO)4 (PCy3)2 (5), as the first formed trimer. The trimer 5 (M  Mo, W) isomerizes to give MPt22PtPt-CO) ((μ2MPtH)(μ2MPt-PnPr2)(CO)4)PCy3)2 (6) which in turn isomerizes to MPt2μ2MPtCO)(μ2MPt2PtPt-PnPr2)(CO)4(PCy3)2 (7, as the final isolable product. These results provide a detailed insight into the mechanism of “Pt(PCy3) addition”, a cluster assembly process.  相似文献   

3.
Reaction of Mn2 (CO)10 with two equivalents of dicyclohexylphosphine in toluene at 110° produces Mn2 (μ-H)(μ-Cy2P)(CO)7(PCy2H) (1) in 60% yield. Interaction of 1 with excess trimethylphosphine produces Mn2(μ-H)(μ-Cy2P)(CO)6 (PMe3)(2 (2) in 90% yield. The X-ray crystal structures of 1 and 2 have been determined. Both structures contain two Mn atoms bridged by a Cy2P group and a hydridge. In each case, the metal atoms exhibit distorted octahedral geometry, with the phosphines occupying positions trans to the P atom of the bridging dicyclohexylphosphine. A metal-metal distance of ca. 2.9 Å separates the manganese atoms in both complexes.  相似文献   

4.
Replacement of the acetate ligands in Pd3(μ-MeCO2)6 in benzene gave complexes of the general formula Pd3(μ-RCO2)6 (R = CF3, CCl3, CH2Cl, Me, cyclo-C6H11, and CMe3). The structures of the complexes were determined using IR spectroscopy, ESI mass spectrometry, and X-ray diffraction. It was found that the complexes contain a trinuclear Pd framework and that their spectroscopic and structural parameters depend on the donor-acceptor properties of the substituent in the carboxylate ligand.  相似文献   

5.
The in situ reactions of the [Et3NH]+ and [MgBr]+ salts of [(μ-RSe)(μ-CO)Fe2(CO)6] (1) anions with PhC(Cl)NPh gave single butterfly complexes (μ-RSe)(μ-PhCNPh)Fe2(CO)6 (2, R=Ph; 3, R=p-MeC6H4; 4, R=Et), whereas those of the [Et3NH]+ salts of 1 with R′NCS afforded single butterfly complexes (μ-RSe)[μ-R′N(H)CS]Fe2(CO)6 (5, R=Ph, R′=Ph; 6, R=p-MeC6H4 R′=Ph; 7, R=p-MeC6H4, R′=PhCO; 8, R=p-MeC6H4, R′=PhCH2). Compound 8 could also be prepared by reaction of the [MgBr]+ salt of 1 (R=p-MeC6H4) with PhCH2NCS followed by treatment with CF3CO2H. More interestingly, while the [Et3NH]+ salt of 1 (R=Ph) reacted with Et3OBF4 to give a carbyne ligand-bridged single butterfly complex (μ-PhSe)(μ-EtOC)Fe2(CO)6 (9), reaction of the [Et3NH]+ salt of 1 (R=Ph) with MeAsI2 produced a MeAsAsMe ligand-bridged double butterfly complex [(μ-PhSe)(μ-MeAs)Fe2(CO)6]2 (10). All the new complexes, 210, were characterized by elemental analysis and various spectroscopic methods, for complexes 8 and 10, the structures were also confirmed by X-ray diffraction techniques.  相似文献   

6.
Treatment of carbido cluster Ru5(μ 5-C)(CO)15 with Me3NO in acetonitrile solution followed by addition of dimethyl maleate or dimethyl acetylene dicarboxylate affords new clusters Ru5(μ 5-C)(CO)13[C2H2(CO2Me)2] (1) and Ru5(μ 5-C)(CO)15[C2(CO2Me)2] (2), respectively. Single crystal X-ray structural studies reveal that both complexes contain a wingtip-bridged butterfly pentametallic skeleton. In complex1 the maleate fragment is coordinated to one wingtip Ru atom through its carbon-carbon double bond and to the adjacent Ru atom by the formation of two O → Ru dative bonding interactions, while the acetylene dicarboxylate fragment in2 is best considered as acis-dimetallated alkene, linking one hinge Ru atom and the nearby Ru atom at the bridged position. Crystal data for1: space group P 42/n;a=20.199(6),c=13.941(3) Å,Z=8; finalR F=0.025,R w=0.026 for 3963 reflections withI>2σ(I). Crystal data for2: space group P21/n;a=9.634(3),b=20.062(6),c=17.372(5) Å,β=90.62(2)°,Z=4; finalR F=0 033,R w=0.036 for 4683 reflections withI>3σ(I).  相似文献   

7.
The reaction of Fe2(CO)6(μ-S2),1 withbis(dibenzylideneacetone)-palladium, Pd(dba)2, in the presence of 2,2′-bipyridine yielded the new compound Fe2(CO)6(μ 3-S)2Pd(bipy),2 in good yield (66%). Compound2 was characterized by IR,1H NMR and single-crystal X-ray diffraction analyses. Compound2 contains a Pd(bipy) group that has been inserted into the S-S bond of1. Crystal data for2: space group P21/n,a=10.019(2) Å,b=25.414(5) Å,c=7.714(2) Å,β=90.26(2)°,Z=4, 1436 reflections,R=0.023.  相似文献   

8.
The title complex (Cp = η(5)-C(5)H(5)) reacted with the labile carbonyl complexes [M(CO)(5)(THF)] (M = Cr, Mo, W) and [MnCp'(CO)(2)(THF)] (Cp' = η(5)-C(5)H(4)Me) to give phosphinidene-bridged trimetallic compounds of formula [Fe(2)MCp(2)(μ(3)-PCy)(μ-CO)(CO)(7)] (Cr-P = 2.479(1) ?) and [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(CO)(4)], respectively, after formation of a new M-P bond in each case, and related heterometallic complexes [Fe(2)MClCp(2)(μ(3)-PCy)(μ-CO)(CO)(2)] (M = Cu, Au; Au-P = 2.262(1) ?) were cleanly formed upon reaction with CuCl or the labile tetrahydrothiophene (THT) complex [AuCl(THT)]. The reaction with [Fe(2)(CO)(9)] proceeded analogously to give the triiron derivative [Fe(3)Cp(2)(μ(3)-PCy)(μ-CO)(CO)(6)] in high yield (new Fe-P bond =2.318(1) ?), along with a small amount of the pentanuclear compound [{Fe(CO)(3)}{(μ(3)-PCy)Fe(2)Cp(2)(μ-CO)(CO)(2)}(2)], the latter displaying a central Fe(CO)(3)P(2) core with a distorted bipyramidal geometry (P-Fe-P = 164.2(1)°). In contrast, the reaction with [Co(2)(CO)(8)] resulted in a full disproportionation process to give the salt [{Co(CO)(3)}{(μ(3)-PCy)Fe(2)Cp(2)(μ-CO)(CO)(2)}(2)][Co(CO)(4)], having a pentanuclear Fe(4)Co cation comparable to the above Fe(5) complex (P-Co-P = 165.3(2)°). The attempted photochemical decarbonylation of the above trinuclear complexes gave results strongly dependent on the added metal fragment. Thus, the irradiation with visible or visible-UV light of the new Fe(3) and Fe(2)Cr species caused no decarbonylation but a tautomerization of the metal framework to give the corresponding isomers [Fe(2)MCp(2)(μ(3)-PCy)(μ-CO)(CO)(n)] now exhibiting a dangling FeCp(CO)(2) moiety (M = Cr, n = 7, Cr-Fe = 2.7370(3) ?; M = Fe, n = 6, new Fe-Fe bond = 2.6092(9) ?) as a result of the cleavage of the Fe-Fe bond in the precursor and subsequent formation of a new M-Fe bond. These processes are reversible, since the new isomers gave back the starting complexes under low (Cr) or moderate (Fe) thermal activation. In contrast, the manganese-diiron complex [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(CO)(4)] could be decarbonylated stepwise, to give first the tetracarbonyl complex [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(2)(CO)(2)] and then the tricarbonyl cluster [Fe(2)MnCp(2)Cp'(μ(3)-PCy)(μ-CO)(3)], the latter having a closed triangular metal core (Fe-Fe = 2.568(7) ?; Mn-Fe = 2.684(8) and 2.66(1) ?).  相似文献   

9.
《Polyhedron》2001,20(9-10):1107-1113
The reactions of dipropargyl manolate and terephthalate, respectively, with Co2(CO)8 in THF at room temperature gave four new compounds [R(CO2CH2C2H-μ)2][Co2(CO)6]2 (R=CH2, 1a; R=C6H4, 1b) and [(HC2CH2OCO)R(CO2CH2C2H-μ)][Co2(CO)6] (R=CH2, 2a; R=C6H4-1,4-, 2b), and compounds 2a and b reacted with RuCo2(CO)11 to form two new linked clusters [R(CO2CH2C2H-μ)2][Co2(CO)6][RuCo2(CO)9] (R=CH2, 3a; R=C6H4-1,4-, 3b). The treatment of two dipropargyl esters, respectively, with RuCo2(CO)11 afforded another two new clusters [R(CO2CH2C2H-μ)2][RuCo2(CO)9]2 (R=CH2, 4a; R=C6H4-1,4-, 4b). The reactions of dipropargyl manolate, terephalate with Mo2Cp2(CO)4 gave rise to the formation of dinuclear complexes [(HC2CH2OCO)R(CO2CH2C2H-μ)][Mo2Cp2(CO)4] (R=CH2, 5a; R=C6H4-1,4-, 5b), compound 5a reacted with Co2(CO)8 to produce the cluster [CH2(CO2CH2C2H-μ)2][Co2(CO)6][Mo2Cp2(CO)4] 6a. All the new clusters have been characterized by C/H elemental analysis, IR and 1H NMR spectroscopies. The structure of [CH2(CO2CH2C2H-μ)2][Co2(CO)6]2 1a and [p-(HC2CH2OCO)C6H4(CO2CH2C2H-μ)][Co2(CO)6] 2b have been determined by single crystal X-ray diffraction methods.  相似文献   

10.
The trinuclear osmium carbonyl cluster, [Os3(CO)10(MeCN)2], is allowed to react with 1 equiv. of [IrCp1Cl2]2 (Cp1 = pentamethylcyclopentadiene) in refluxing dichloromethane to give two new osmium–iridium mixed-metal clusters, [Os3Ir2(Cp1)2(μ-OH)(μ-CO)2(CO)8Cl] (1) and [Os3IrCp1(μ-OH)(CO)10Cl] (2), in moderate yields. In the presence of a pyridyl ligand, [C5H3N(NH2)Br], however, the products isolated are different. Two osmium–iridium clusters with different coordination modes of the pyridyl ligand are afforded, [Os3IrCp1(μ-H)(μ-Cl)(η33-C5H2N(NH2)Br)(CO)9] (3) and [Os3IrCp1(μ-Cl)223-C5H3N(NH)Br)(CO)7] (4). All of the new compounds are characterized by conventional spectroscopic methods, and their structures are determined by single-crystal X-ray diffraction analysis.  相似文献   

11.
3D LaIII and 2D CuII coordination polymers with 5-nitroisophthalate anions, [La2(μ-Nip)(μ-SO4)2(H2O)5] n (1) and {[Cu3(μ-OH)2(μ-Nip)2(μ-H2O)2] ·?2H2O} n (2), have been synthesized, characterized and studied by X-ray crystallography. The La atoms have eight–coordinate geometries in distorted square antiprism environments and the Cu atoms have five- and six–coordinate geometries with distorted square pyramidal and octahedral environments. Self-assembly of these compounds in the solid state occurs through coordination and hydrogen bonding.  相似文献   

12.
(Cy3P)2Pd (Cy = C6H11) reacts with PhOH in toluene to give the phenoxopalladium(II) hydride derivative trans-(PhO)(H)Pd(PCy3)2·PhOH; the crystal structural study has established that the oxygen of the phenoxy group forms a hydrogen bridge with an uncoordinated phenol molecule, and has allowed direct location of the hydride atom (Pd&.sbnd;H, 1.57(2) Å).  相似文献   

13.
The title complexes were tested in the hydrogenation of hex-3-yne and of 1,3- and 1,4-cyclohexadiene (CHD) under solid–gas conditions. The clusters were deposited on three “standard” supports, that is, pyrex glass, alumina, and silica. All the clusters, particularly (μ-H)Ru3(CO)10(PPh2), show hydrogenation activity. However, they are not particularly selective toward the formation of monoenes; “disproportionation” of 1,3- and 1,4-CHD to hydrogenated products and benzene also occurs. The hydrogenation activity of the clusters is dependent on their nature, the type of substrate, and the characteristics of the supporting material; silica and pyrex glass are usually more active than alumina. Attempts at detecting the formation of organometallic intermediates or by-products (through IR spectroscopy) were made. HRTEM was used to check for eventual decomposition on some supports.  相似文献   

14.
The tetranuclear ruthenium cluster [Ru4(CO)10Cl2(OEt)2] has been prepared in low yield by the reaction of [Ru3(CO)12] with [N(PPh3)2]Cl in refluxing EtOH, followed by oxidation with either [NO][BF4] or Ag[ClO4]. A single-crystal X-ray analysis of the complex shows that the four metal atoms adopt a planar geometry with one ruthenium bonded by two μ2-Cl ligands and two μ3-OEt ligands to a trinuclear fragment. This complex crystallises in the monoclinic space group I2/c, with a 14.458(3), b 22.073(6), c 15.302(4) Å, β 99.54(2)°, Z = 8; 3113 observed data with F > 3σ(F) were refined by blocked full-matrix least squares to R = 0.031, Rw = 0.034.  相似文献   

15.
Two molecules of C(2)(CO(2)Me)(2) or isocyanides could be added to the title hydride complex under mild conditions to give dienyl-[W(2)Cp(2){μ-η(1),κ:η(2)-C(CO(2)Me)=C(CO(2)Me)C(CO(2)Me)=CH(CO(2)Me)}(μ-PCy(2))(CO)(2)] (Cp = η(5)-C(5)H(5)), diazadienyl-[W(2)Cp(2){μ-κ,η:κ,η-C{CHN(4-MeO-C(6)H(4))}N(4-MeO-C(6)H(4))}(μ-PCy(2))(CO)(2)] or aminocarbyne-bridged derivatives [W(2)Cp(2){μ-CNH(2,6-Me(2)C(6)H(3))}(μ-PCy(2)){CN(2,6-Me(2)C(6)H(3))}(CO)]. In contrast, its reaction with excess (4-Me-C(6)H(4))C(O)H gave the C-O bond cleavage products [W(2)Cp(2){CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)(2)] and [W(2)Cp(2){μ-η:η,κ-C(O)CH(2)(4-Me-C(6)H(4))}(O)(μ-PCy(2))(CO)].  相似文献   

16.
The reaction of dipropargyl phthalate C6H4-1,2-(CO2CH2C2H-μ)2 1 with octacarbonyldicobalt 2 resulted in the formation of red complex [C6H4-1,2-(CO2CH2C2H-μ)2][Co2(CO)6]2 3, in which each Co2(CO)6 group coordinates to one of the two C≡C bonds of 1. Molecular structure of complex 3 was determined by single crystal X-ray analyses. The crystal belongs to the monoclinic system, space group P21/a with the following crystallographic parameters: a=8.521(2), b=29.143(6), c=12.918(7)(A), β= 100.12(3)°, V=3158(2)(A)3, Z=4, Mr=814.09, Dc=1.712 g.cm-3, F(000)=1608, μ(Mo-Kα)=21.37 cm-1 and final R=0.044 for 3151 observations.  相似文献   

17.
The IrIII fragment {Ir(PCy3)2(H)2}+ has been used to probe the role of the metal centre in the catalytic dehydrocoupling of H3B?NMe2H ( A ) to ultimately give dimeric aminoborane [H2BNMe2]2 ( D ). Addition of A to [Ir(PCy3)2(H)2(H2)2][BArF4] ( 1 ; ArF=(C6H3(CF3)2), gives the amine‐borane complex [Ir(PCy3)2(H)2(H3B?NMe2H)][BArF4] ( 2 a ), which slowly dehydrogenates to afford the aminoborane complex [Ir(PCy3)2(H)2(H2B? NMe2)][BArF4] ( 3 ). DFT calculations have been used to probe the mechanism of dehydrogenation and show a pathway featuring sequential BH activation/H2 loss/NH activation. Addition of D to 1 results in retrodimerisation of D to afford 3 . DFT calculations indicate that this involves metal trapping of the monomer–dimer equilibrium, 2 H2BNMe2 ? [H2BNMe2]2. Ruthenium and rhodium analogues also promote this reaction. Addition of MeCN to 3 affords [Ir(PCy3)2(H)2(NCMe)2][BArF4] ( 6 ) liberating H2B? NMe2 ( B ), which then dimerises to give D . This is shown to be a second‐order process. It also allows on‐ and off‐metal coupling processes to be probed. Addition of MeCN to 3 followed by A gives D with no amine‐borane intermediates observed. Addition of A to 3 results in the formation of significant amounts of oligomeric H3B?NMe2BH2?NMe2H ( C ), which ultimately was converted to D . These results indicate that the metal is involved in both the dehydrogenation of A , to give B , and the oligomerisation reaction to afford C . A mechanism is suggested for this latter process. The reactivity of oligomer C with the Ir complexes is also reported. Addition of excess C to 1 promotes its transformation into D , with 3 observed as the final organometallic product, suggesting a B? N bond cleavage mechanism. Complex 6 does not react with C , but in combination with B oligomer C is consumed to eventually give D , suggesting an additional role for free aminoborane in the formation of D from C .  相似文献   

18.
The electrical conductive molecular crystals (Me3NEt)[Pd(dmit)2]2 and (NEt4)[Pd (dmit)2]2 (dmit = 4,5-dimercapto-1,3-dithiole-2-thione) have been prepared, and their crystal structures and conductivity-temperature curves have been determined. The fact that the conductivity at room temperature of (Me3NEt)[Pd(dmit)2]2 (a = 58 Ω· cm-1) is much higher than that of (NEt4)-[Pd(dmit)2]2(cr= 2.2 Q~1 ?cm'1) has been rationally explained by the results of energy band calculations. (MeNEt3)[Pd(dmit)2]2 belongs to monoclinic system, P21/m space group and (NEt4)[Pd (dmit)2]2 belongs to triclinic system, P1 space group. The structural conducting component of the crystals is the planar coordinative anion [Pd(dmit)2]05- which forms the face-to-face dimmer [Pd(dmit)2]2-. These dimers have been further constructed to be a kind of two-dimensional (2-D)conductive molecular sheet by means of S…S intermolecular interactions. The tiny difference of the above 2-D molecular sheets of the two title crystals has resulted in one  相似文献   

19.
The treatment of dipropargyl ether HC2CH2OCH2C2H with Co2(CO)8 resulted in the formation of a novel cluster [Co2(CO)6][μ-HC2CH2OCH2C2H-μ][Co2(CO)6]. The cluster was characterized by C/H analyses, IR and 1H NMR spectroscopy and X-ray crystal structure determination. It belongs to monoclinic system, space group P21/c with the following crystallographic parameters: a=18.149(2), b=7.0111(7), c=20.897(2)(A), β=115.318(7)°, V=2403.7(5)(A)3, Z=4, Mr=665.97, Dc=1.840 g·cm-3, F(000)=1304.00, μ(Mo-Kα)=27.76 cm-1 and R=0.030 for 2372 observed reflections.  相似文献   

20.
The reaction of μ-alkyne-bridged dimolybdenum compound [Mo2(μ-C2HPh)(CO)4(η5-C5H4C(O)Me)2] 1 with Co2(CO)8 in refluxing toluene gave a new butterfly compound [Co2Mo2(μ4-C2HPh)(μ-CO)4(CO)4(η5-C5H4C(O)Me)2] 2 which was fully characterized by elemental analysis, IR, 1H NMR and X-ray single crystal diffraction techniques. 2 crystallized in monoclinic system, C30H20Co2Mo2O10, Mr=850.23, space group P21/a(#14), a=14.165(5), b=12.498(2), c=16.204(2)(A), β = 96.50(2)°, V = 2850(1)(A)3, Z = 4, Dc = 1.981 g cm-3, F(000)=1672, μ(MoKα)=20.41 cm-1, final R=0.030, Rw=0.039 for 4831 observable reflections with I>2σ(I). The structure contains a Co2Mo2 butterfly core, and each Mo-Co bond is spanned by an asymmetric semi-bridging carbonyl ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号