首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nucleation of polar and apolar crystals in an electrostatic field has been analyzed. The analysis is based on the extended nucleation theory which takes into account orientation of amorphous kinetic elements and the resulting crystals. In an electric field free energy of transformation is orientation-dependent which leads to orientation and field effects in thermodynamic (critical crystallization temperature) and kinetic crystallization characteristics (thermal and athermal nucleation rates).  相似文献   

2.
Recent experiments have demonstrated that intense, nanosecond laser pulses can induce crystal nucleation from supersaturated solutions that are transparent at the incident wavelengths, a phenomenon termed nonphotochemical laser-induced nucleation (NPLIN). Previous work has proposed that this effect is due to the alignment of solute molecules in solution due to the electric field of the applied laser light, promoting crystalline order. We have used simulations of NPLIN to examine how an orientational bias in solution affects nucleation with Monte Carlo simulations of a Potts lattice gas model. We examine this effect within both a classical, one-step nucleation framework as well as in the context of two-step nucleation. Our results indicate that an orientational bias can reduce the free energy barrier to nucleation within the one-step picture as well as promote the crystallization of amorphous precritical nuclei (the rate-determining step in the two-step picture). However, these effects are only present with field strengths that are much greater than those used in experiments.  相似文献   

3.
In situ birefringence measurements of the seeded growth in a tubular flow geometry of 0.01 wt% solution of a polyethylene fraction in xylene have been used to determine the flowinduced crystallization kinetics as a function of temperature and flow rate. In contrast to earlier reports on higher molecular weight polyethylene and polypropylene systems, orientational properties of the crystallized fibers do not show a clear correlation with growth conditions (i.e., temperature and flow rate). The combined kinetic data from these experiments and our earlier studies of higher molecular weight polyethylene—xylene and polypropylene—tetralin systems are analyzed in terms of a modified from of the Avrami equation which provides a basis for separately correlating temperature and flow rate effects. The observed temperature dependency of the crystallization process can be interpreted in terms of nucleation and growth models while the flow rate dependency can be interpreted on the basis of entanglement formation arguments. Results showing liquid phase precursor formation in an atactic polystyrene system are also presented to further document the liquidphase separation which can be induced in polymers under flow.  相似文献   

4.
The 2H-N.M.R. spectra of mixtures of the non-mesogenic compound 4-cyano-4'-methylbiphenyl (1CB) and the nematic liquid crystal 4-cyano-4'-n-pentylbiphenyl (5CB) are measured as a function of concentration and temperature. Concentrations of up to 25 mol% 1CB have no effect on the N.M.R. spectrum and therefore on the orientational order of 5CB at a given reduced temperature. The order matrix of the 1CB is calculated from the measured quadrupole couplings. The results are analysed in terms of a model for orientational order that includes two anisotropic terms: (a) interaction between the molecular quadrupole moment and the mean electric field gradient of the medium, and (b) short range repulsive interactions. An estimate of the molecular quadrupole moment tensor of 1CB is obtained from the analysis.  相似文献   

5.
A nucleation rate function is proposed for use in analyzing the overall crystallization kinetics of polymers. This function allows for the possibility that the nucleation rate varies substantially during the crystallization. This feature is particularly useful in analyzing nonisothermal crystallization, but it can be used to analyze isothermal crystallization as well. The nucleation rate function was used in the derivation of a modified transformation kinetics equation of the Avrami type. The modified Avrami equation was found to be suitable for kinetics analysis for the data obtained from nonisothermal crystallization at rapid cooling rates. Kinetics parameters used to describe nonisothermal crystallization under rapid cooling rates are presented and discussed. These include crystallization induction time, plateau (crystallization) temperature, crystallization half-time, crystallization rate constant, Avrami index, and newly defined quantities called nucleation index, geometric index, and nucleation rate constant. The procedure used to obtain the nucleation rate constant and nucleation index for the nucleation rate function is described and illustrated by application to the analysis of the crystallization kinetics of polypropylene. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1077–1093, 1997  相似文献   

6.
The 2H-N.M.R. spectra of mixtures of the non-mesogenic compound 4-cyano-4′-methylbiphenyl (1CB) and the nematic liquid crystal 4-cyano-4′-n-pentylbiphenyl (5CB) are measured as a function of concentration and temperature. Concentrations of up to 25 mol% 1CB have no effect on the N.M.R. spectrum and therefore on the orientational order of 5CB at a given reduced temperature. The order matrix of the 1CB is calculated from the measured quadrupole couplings. The results are analysed in terms of a model for orientational order that includes two anisotropic terms: (a) interaction between the molecular quadrupole moment and the mean electric field gradient of the medium, and (b) short range repulsive interactions. An estimate of the molecular quadrupole moment tensor of 1CB is obtained from the analysis.  相似文献   

7.
The melt crystallization of poly(vinylidene fluoride) in a static electric field was studied for different fields strengths and undercooling conditions. The γ-phase nucleation process was examined directly by polarized optical microscopy and indirectly by small-angle light scattering. The crystal phase content was assessed by differential scanning calorimetry. It is shown that the γ-phase nucleation density and γ-phase content increase with field strength and that the higher the crystallization temperature, the larger the effect of the field. These experimental results confirm the predictions of the model of nucleation in an electric field that we published previously. It is also noted that the degree of crystallinity and the perfection of crystal orientation along the γ-phase spherulite radical direction decrease with field strength. The homogeneity of morphology resulting from the crystallization in the field is also examined by polarized optical microscopy on specimens microtomed across their thickness. When the crystallization is carried out under high field (E ≈ 0.1 MV/cm) and high temperature (T > 166°C) a nonuniform morphology results, characterized by a higher nucleation density at the positive electrode than at the negative electrode. Near the negative electrode very large disklike spherulites are seen to grow parallel to the substrate.  相似文献   

8.
In the melt crystallization of isotactic polypropylene, poly(ethylene oxide) and poly(butene-1) in contact with substrates, the existence of a fixed number of nucleating sites on the substrate surfaces has been established. When these sites become active successively (the transient in the number of nuclei is long) during crystallization, pseudohomogeneous nucleation on the substrate occurs. Nucleation rates for poly(butene-1) and poly(ethylene oxide) on substrates and in bulk have been measured. These data can be used for comparing the nucleating ability of substrates. Estimates of the variation of bulk nucleation rates from one volume element to another as well as for repeated crystallization within a given volume element have been included. Finally, the temperature coefficients of heterogeneous nucleation rates have been combined with the temperature coefficient of spherulitic growth rate of poly(butene-1), to yield values of the interfacial energy parameters appearing in the theory of heterogeneous nucleation. The quantitative characterization of the nucleating ability of substrates by this method is an improvement over the mere use of nucleation densities or nucleation rates.  相似文献   

9.
10.
In this paper, we proposed a method to determine the nucleation effect of pre-existing crystals on crystallization of the second block in double crystalline block copolymers, which is usually covered by the suppression effect. The nucleation mechanism of poly(ethylene oxide) (PEO) block from the pre-crystallized polyethylene (PE) block in poly(ethylene-cobutene)-b-poly(ethylene glycol) (EmEOn) diblock copolymers was investigated under variable crystallization environments. The crystallization environment for the PEO block was altered by cooling at different cooling rates or successive selfnucleation (SSN) to the PE block. It was found that the presence of nucleation effect is strongly dependent on composition of the block copolymers. The crystallization temperature (Tc) of PEO block in E174EO90 increases as cooling rate applied to the PE block decreases, indicating that PE block can nucleate the crystallization of PEO block and more perfect PE crystals have stronger nucleation effect. In E182EO41 crystallization of the PEO block is confined, shown by the disappearance of selfnucleation domain, and the PE block has no nucleation effect on the crystallization of PEO block. Double crystallization peaks are observed for the PEO block in E182EO41 and the intensity of the crystallization peak at higher temperature increases as the PE crystals become more perfect. After exclusion of homogeneous nucleation mechanism, the higher temperature crystallization peak of the PEO block in E182EO41 is tentatively ascribed to surface nucleation.  相似文献   

11.
AlPO‐11 and SAPO‐11 are synthesized using microwave heating. The effects of precursor volume, reaction temperature, reactor geometry, stirring, applicator type and frequency on the microwave synthesis of SAPO‐11 and AlPO‐11 are studied. The nucleation time and crystallization rate are determined from crystallization curves for SAPO‐11 (and/or AlPO‐11), for the various parameters investigated. Increasing volume of the reacting material decreases the reaction rate of SAPO‐11 at 160°C. In particular, the nucleation time increases with increase in the reaction volume. Increasing the reaction temperature increases the crystallization rate and decreases the nucleation time, however it decreases the particle size. Nucleation of SAPO‐11 and AlPO‐11 under microwave heating is strongly dependant on the reaction temperature. Using wider geometry vessel (33 mm compared to 11 mm diameter) enhances the reaction rate, producing larger crystals in the same reaction time, even though the crystallization rate is decreased. The crystallization rate is enhanced by applicator type in the following order CEM MARS‐5 oven>CEM Discover “focused” system>monomode waveguide. Stirring the reacting solution during heating affects primarily the nucleation time. The effect of microwave frequency on the nucleation and growth of SAPO‐11 shows a dependence on the applicator type more than the specific frequency, for the frequency range 2.45–10.5 GHz. The difference between the crystallization rate observed at higher frequencies and that at 2.45 GHz maybe due to the multimode nature of the waveguide at frequencies above 2.45 GHz. Sweeping the microwave frequency linearly between 8.7 and 10.5 GHz at rates of 10 min?1 and 100 min?1 shows an intermediate crystallization curve to that for fixed frequencies of 2.45 GHz and that for 5.8, 8.7 and 10.5 GHz.  相似文献   

12.
When a melt-spun poly(ethylene terephthalate) (PET) fiber is heat treated at a temperature above its glass transition temperature, the relative rates at which the crystallization and major orientational relaxation processes occur have been shown to have a pronounced effect on the structure of the fiber and its deformability. The present study describes the consequences of this aspect, with examples from drawing of melt-spun PET fibers subsequent to their crystallization by thermal annealing. Additional features of the highly ordered PET fibers which can be produced through a combination of oriented crystallization and drawing at high temperatures are also given.  相似文献   

13.
The nature of crystallization- and mobility-induced changes during annealing of melt-spun poly(ethylene terephthalate) precursor fibers of a range of orientations has been examined. The kinetics of crystallization and the accompanying orientational changes have been studied under conditions of constant, low tensile stress, with the accompanying dimensional changes and under a constraint against shrinkage in length, with the stress developed being monitored. The effects of precursor orientation and externally imposed constraints on the course of the fundamental crystallization and orientational relaxation processes are revealed. Oriented crystallization has been shown to have a significant effect on the stress developed and on the dimensions of oriented precursor fibers, with a strong tendency to spontaneously extend as a consequence of the reorientation of crystallizing segments predominantly along the preferred fiber direction. The sequence in which crystallization and major orientational relaxation, if any, occur is found to have a profound effect on the structure and thus the deformability of oriented fibers after annealing above the glass transition temperature.  相似文献   

14.
A metal–organic framework material named MIL‐53(Fe), iron terephthalate, has been synthesized sovothermally at a relatively low temperature by not only conventional electric (CE) heating, but also by irradiation under ultrasound (US) and microwave (MW) conditions to gain an understanding of the accelerated syntheses induced by US and MW. The kinetics for nucleation and crystal growth were analyzed by measuring the crystallinity of MIL‐53(Fe) under various conditions. The nucleation and crystal growth rates were estimated from crystallization curves of the change in crystallinity with reaction time. The activation energies and pre‐exponential factors were calculated from Arrhenius plots. It was confirmed that the rate of crystallization (both nucleation and crystal growth) decreases in the order US>MW?CE, and that the accelerated syntheses under US and MW conditions are due to increased pre‐exponential factors rather than decreased activation energies. It is suggested that physical effects such as hot spots are more important than chemical effects in the accelerated syntheses induced by US and MW irradiation. The syntheses were also conducted in two steps to understand quantitatively the acceleration induced by MW and it was found that the acceleration in crystal growth is more important than the acceleration in nucleation, even though both processes are accelerated by MW irradiation.  相似文献   

15.
Nonisothermal crystallization of several polymers was investigated with differential scanning calorimetry and optical microscopy. The results indicated that as in the case of isothermal processes, crystallization starts with nucleation on noncompletely melted crystalline residues. It is assumed that if the crystalline residues are subcritical at melting temperatures, they can become stable by an athermal mechanism during cooling. There is also some contribution of nucleation on heterogeneities. The next mechanism of nucleation is a classical homogeneous process occurring by thermal fluctuations. The results showed the non‐steady‐state character of the nonisothermal crystallization of polymers. In the investigated range of cooling rates, the non‐steady‐state character of nonisothermal crystallization of polymers is dominated by the transient thermal effects. In the range of high temperatures, the transient homogeneous nucleation can be interpreted with the Ziabicki model, and the steady‐state rate determined from nonisothermal experiments coincides with the rate determined in isothermal crystallization. The athermal nucleation occurring at the beginning of crystallization from noncompletely melted aggregates seems to be independent of the applied cooling rate. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 68–79, 2003  相似文献   

16.
The difference between liquid-crystal and gas-phase values for the nuclear quadrupole coupling constant in D2 and HD is used to obtain the mean electric field gradient in various liquid crystals. Order parameters for small molecules dissolved in liquid crystals are calculated assuming that the orientational order arises from the interaction of the molecular quadrupole moment with the average field gradient. The results obtained are in good agreement with experimental values for hydrogen and several other solutes.  相似文献   

17.
The kinetics of crystalline ice nucleation and growth in nonporous, molecular beam deposited amorphous solid water (ASW) films are investigated at temperatures near 140 K. We implement an experimental methodology and corresponding model of crystallization kinetics to decouple growth from nucleation and quantify the temperature dependence and absolute rates of both processes. Nucleation rates are found to increase from approximately 3x10(13) m(-3) s(-1) at 134 K to approximately 2x10(17) m(-3) s(-1) at 142 K, corresponding to an Arrhenius activation energy of 168 kJ/mol. Over the same temperature range, the growth velocity increases from approximately 0.4 to approximately 4 A s(-1), also exhibiting Arrhenius behavior with an activation energy of 47 kJ/mol. These nucleation rates are up to ten orders of magnitude larger than in liquid water near 235 K, while growth velocities are approximately 10(9) times smaller. Crystalline ice nucleation kinetics determined in this study differ significantly from those reported previously for porous, background vapor deposited ASW, suggesting the nucleation mechanism is dependent upon film morphology.  相似文献   

18.
Data already existing in the literature for the overall crystallization kinetics of a variety of polymers have been analyzed according to different possible nucleation mechanisms. The conclusions reached are similar to those previously deduced from an examination of ata for spherulite growth rates. It is demonstrated that, if allowed a reasonable choice for the equilibrium melting temperature, no unbiased selection of a unique nucleation process can be made. Moreover, a set of universal parameters exists for each of the nucleation and growth processes considered which allows the data for all polymers to be represented by a single straight line. The only quantities that are unique to a given polymer are the equilibriun melting temperature and the activation energy for transport.  相似文献   

19.
在经典的热力学理论基础上,探讨了磁场对聚合物本体结晶过程的成核与生长的影响,建立了相关结晶动力学理论方程.初步认为,磁场产生的"磁结晶效应"可能是由于晶相与非晶相之间磁化率差异导致了两相之间磁化能的差异,也可能由于聚合物体系在结晶前会形成一种有序相,减小了体系的熵值,进而改变了结晶过程中的体系自由能,影响其成核与晶体生长,乃至整个结晶动力学方程.利用Matlab软件结合PLLA的各结晶参数值,绘制了结晶自由能与各成核临界参数之间的函数图像.结果表明,在低过冷度下,较小的自由能扰动可能导致较大的晶核临界参数变化.  相似文献   

20.
The crystallization kinetics of polypropylene and poly (butyl methacrylate-co-hydroxyethyl methacrylate) blend was investigated with differential scanning calorimetry. The isothermal crystallization analysis based on the Avrami theory indicated a heterogeneous nucleating effect from the copolymer. A systematic study of the nonisothermal crystallization kinetics was undertaken using the Avrami equation and its later modifications by Ozawa, Mo, and Zhang. The results demonstrated that the linear relationship failed in the different cooling rates because the Avrami method did not take into account that the crystallization temperature was lowered continuously. The Ozawa and Mo methods could be successful in describing the overall nonisothermal process of polypropylene and the blend. In addition, the nonisothermal crystallization energy values were estimated by the Kissinger and Freidman models. There are two mutually opposite effects on the crystallization behavior of the blend: nucleation ability and growth retardation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号