首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Applying a high-frequency lateral vibration between tip and sample in a scanning force microscope (SFM), a harmonically modulated lateral (friction) force image can be obtained using lock-in techniques. Harmonically modulated lateral force microscopy (HM-LFM) offers several advantages compared with standard lateral force microscopy (LFM). After a brief investigation of the scan velocity dependence of LFM and HM-LFM, two samples were investigated. First, the surface of a poly(acrylonitrile-co-styrene)/polybutadiene blend (ABS) was used to demonstrate the ability of the new technique to decrease the stick effects of the SFM tip. Second, an interface between two chemically very similar polymers was prepared by melting polypropylene (PP) and poly(propene-block-ethene) (PP-block-PE) films on each other. After cutting, the surface roughness of this sample was very high. It is shown that only HM-LFM clearly resolves the local micromechanical properties without artefacts.  相似文献   

2.
Microwave annealing enables rapid (60 s) ordering and orientation of block copolymer films. The developed morphology in polystyrene‐block‐poly(methyl methacrylate) (PS‐b‐PMMA) thin films depends on details of the heating rate that is controlled by microwave output energy as well as the sample location in the microwave. Over a wide heating rate (1.1–2.7 °C/s), perpendicular orientation of the cylindrical mesostructure at the surface is >50% after 60 s, but goes through a maximum at 1.8 °C/s leading to approximately 97% perpendicular cylinders at the surface. The propagation of this perpendicular surface morphology through the film thickness is also dependent upon the microwave annealing conditions. The surface structure evolves with the microwave annealing time from imperfect ordering to perpendicular cylinders to parallel cylinders as the annealing time increases. This work demonstrates the importance of controlling the heating rate during microwave annealing, which will be critical for optimizing microwave conditions for directed self‐assembly. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1499–1506  相似文献   

3.
The morphologies of poly(lactide)-block-poly(dimethylsiloxane)-block-polylactide (PLA-b-PDMS-b-PLA) triblock copolymer films were studied using a combination of grazing-incidence small-angle X-ray scattering, X-ray reflectivity and scanning electron microscopy. This block copolymer is characterized by a high Flory–Huggins interaction parameter which leads to the self-assembly of periodic high-resolution nanodomains. In this article, we performed a detailed analysis of GISAXS patterns, in the frame of the Distorted Wave Born Approximation, in order to determine the morphology of blocks and their spatial arrangement. For a low volume fraction of PLA (17%), a three-dimensional hexagonal lattice of PLA spherical blocks is revealed, while, for a PLA fraction twice larger, in-plane (parallel) PLA lying cylinders adopt a two-dimensional centered rectangular lattice. Moreover, the in-depth electron density profile of the polymer film for the cylindrical morphology was extracted from the XRR data, revealing the presence of interfacial layers at the top surface and at the interface with the Si substrate.  相似文献   

4.
In this article, we present the results of a study on the surface properties of chromic acid-oxidized low-density polyethylene (LDPE) by scanning force microscopy (SFM) and contact angle measurements. LDPE films were surface modified by a chromic acid treatment with subsequent annealing in argon and reconstruction in boiling water as described by Rasmussen, Stedronsky, and Whitesides [J. Am. Chem. Soc., 99 , 4736 (1977)]. The LDPE oxidation in chromic acid was monitored in situ by contact mode SFM. Initially stacks of lamellae became exposed, and at later stages a granular morphology was observed. By tapping mode SFM, the sample roughness was shown to increase during the first 10 min of oxidation from initially ca. 20 nm to ca. 50 nm. Gold-coated SFM probes (tips) functionalized with self-assembled monolayers were used to determine the pull-off force characteristics in ethanol. Variations in the contact area between SFM tips and polymer surfaces that exposed sharp crystalline features were shown to obscure the results of pull-off force measurements. However, on annealed and subsequently reconstructed samples with lower roughness, the results of force measurements correlated well with the measured contact angles. Over the range of surface energies studied, the normalized pull-off force between carboxylic acid-modified tips and these smooth samples was shown to depend approximately linearly on the cosine of the contact angle. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2483–2492, 1998  相似文献   

5.
A new approach is described to tailor properties of polyketones based on the controlled modification of the block structure by varying the polymerization process. Ethylene-propylene-CO (ECOPCO) terblock copolymers with similar composition but different chain microstructures have been synthesized using either preset polymerization (PSP) or pulsed-feed polymerization (PFP), respectively. Whereas by PSP an ABC-triblock structure is obtained, the PFP results in [AB]n-multiblock structure. In this paper we investigate the influence of the chain microstructure on the mechanical behavior and the surface properties.SFM phase images display a phase-separated bulk morphology where triblock polymers due to the larger block lengths form coarser structures than the multiblock samples. If the ECO content is above 50%, partially crystalline lamellar structures can be found, which in case of the multiblock sample form a continuous network of lamellar-like ECO rich domains. All ECOPCO terpolymers reveal elastomeric behavior with an elastic recovery of at least 82% but tensile strength and elongation vary with the block length of the chain microstructures. Differences in elasticity are explained by the formation of different amounts of cross-links consisting of blocks of parallel-aligned ECO chain segments or crystalline lamellae. It can be shown that the surface morphology differs from bulk morphology, mainly by the point that no distinct phase separation appears but ECO rich domains can be detected. Surface tension measurements enable to correlate the surface energy with surface composition and surface morphology.  相似文献   

6.
The bulk morphology of poly(1,4‐butadiene)–block–polystyrene–block–poly (ethylene oxide) (PB‐b‐PS‐b‐PEO) and polyethylene–block–polystyrene–block–poly (ethylene oxide) (PE‐b‐PS‐b‐PEO) triblock terpolymers is analyzed under a thermal protocol. This allows the investigation of the morphology during the occurrence of thermal transitions, such as crystallization and melting, which is a neat way of studying the competition between microphase separation and crystallization for the morphology formation. Only one of the studied systems presented a morphological transition upon melting of the PEO and the PE blocks, attributed to the crystallization of the PE block in finite interconnected domains. All the other systems presented no morphological transitions during the thermal scan. The results prove that the crystallization only disrupt the microphases generated in the molten state under very specific circumstances for these block copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3197–3206, 2007  相似文献   

7.
8.
Composite ultrafiltration membranes were fabricated by coating a thin film of self‐assembling polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) block copolymers and poly(acrylic acid) homopolymers on top of a support membrane. Block copolymers self‐assembled into a nanostructure where the minority component forms cylinders, whereas homopolymers reside in the core of the cylinders. Selective removal of the homopolymers led to the formation of pores. The morphology of the polymer layer was controlled by varying the content of homopolymers or polymer concentration of the coating solution, which led to membranes with different molecular weight cutoffs (MWCOs) and permeabilities. Uniform pores were obtained using low homopolymer contents, whereas high homopolymer contents caused macrophase separation and resulted in large polydisperse pores or craters at the surface. The thickness of the block copolymer film also influenced the structure and performance of the membranes, where a thicker film results in a strong decrease in permeability but a lower MWCO. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1546–1558  相似文献   

9.
Deviations from bulk morphologies in thin films of binary blends of alkyne-functionalized diblock copolymer poly(ethylene oxide)-block-poly(n-butyl methacrylate-random-propargyl methacrylate) (PEO-b-P(nBMA-r-PgMA)) and Rhodamine B azide are reported, where thermal click reaction between the two components leads to microphase separated morphologies. Both in the bulk and in thin films, increasing the azide loading ratio resulted in the transition from a lamellar microdomain morphology to a hexagonally packed cylindrical mircodomain morphology. However, in thin films the lamellae-cylinder transition was observed at a different azide loading ratio, which was determined by film thickness. As a result, significant deviations from the bulk morphology were observed. These results indicate that surface interactions and confined geometry can play an important role in dictating the morphology in thin films of BCP/additive binary blends.  相似文献   

10.
We report the formation of a highly entangled and interconnected, self-assembled, wormlike-cylinder network of polystyrene-block-poly(ethylene oxide) in N, N-dimethylformamide/water. In this system, N,N-dimethylformamide was a common solvent and water was a selective solvent for the poly(ethylene oxide) blocks. The degrees of polymerization of the polystyrene and poly(ethylene oxide) blocks were 962 and 227, respectively. The network was formed at copolymer concentrations higher than 0.4 wt % and consisted of self-assembled, wormlike cylinders that were interconnected by Y-shaped, T-shaped, and multiple junctions. The network morphology was visualized with transmission electron microscopy. Capillary viscometry measurements revealed an order-of-magnitude increase in the inherent viscosity of the colloidal system upon the formation of the network. A similar effort to obtain a wormlike-cylinder network in an N,N-dimethylformamide/acetonitrile system, in which acetonitrile was a selective solvent for the poly(ethylene oxide) blocks, was unsuccessful even at high copolymer concentrations; instead, the wormlike cylinders showed a tendency to align. The viscosity measurements also did not show a substantial increase in the inherent viscosity. Thus, the solvent played a critical role in determining the formation of the self-assembled, wormlike-cylinder network. This formation of the network resulted from an interplay between the end-capping energy, bending energy (curvature), and configurational entropy of the self-assembled, wormlike-cylinder micelles that minimized the free energy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3605–3611, 2006  相似文献   

11.
We investigated the effect of hard additives, that is, magnetic nanoparticles (NPs) and metal NPs, on the ordered morphology of block copolymers by varying the NP concentration. To characterize the structural changes of a block copolymer associated with different NP loadings, small-angle X-ray scattering and transmission electron microscopy were performed. Monodisperse maghemite (γ-Fe2O3) NPs (7 nm in diameter) and silver (Ag) NPs (6 nm in diameter) with surfaces modified with oleic acids were synthesized, and a cylinder-forming poly(styrene-block-isoprene) diblock copolymer was used as a structure-directing matrix for the NPs. As the NP concentration increased, domains of NP aggregates were observed for both magnetic and metal NPs. In the case of mixtures of cylinder-forming poly(styrene-block-isoprene) and Ag NPs with weak particle–particle interactions, random aggregates of Ag NPs were observed, and the ordered morphology of the block copolymer lost its long-range order with an increase in the NP concentration. However, regular, latticelike aggregates obtained with γ-Fe2O3 NPs, because of the strong interparticle interactions, induced an intriguing morphological transformation from hexagonal cylinders to body-centered-cubic spheres via undulated cylinders, whereas the neat block copolymer did not show such a morphological transition over a wide range of temperatures. The interplay between magnetic NPs and the block copolymer was also tested with magnetic NPs of different sizes. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3571–3579, 2006  相似文献   

12.
One of the main limits in the use of block copolymers for nanotechnological applications lies in the poor control over the alignment of the nanoscopic domains. The self-assembling behavior of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) has been modified by stoichiometric complexation of the ethylene oxide units with resorcinol and a simple procedure to prepare nanostructured films with normally oriented cylinders is reported. By direct spin coating of a series of complexated PS-b-PEO samples with different molecular weight and composition, films with the same morphology and orientation (i.e., normally oriented packed cylinders) have been obtained, also when different nanostructures and alignments were expected on the basis of the volume fraction composition and self-assembling behavior of pure copolymers. Tuning of the cylinder diameters in the range from 20 to 50 nm was possible by varying the length of the PEO block. The effects of resorcinol complexation have been studied by differential scanning calorimetry and X-ray diffraction and the morphologies of PS-b-PEO and PS-b-PEO/resorcinol films have been monitored by atomic force microscopy and electron microscopies. DSC and XRD analyses demonstrate that resorcinol significantly influences the crystallization behavior of the PEO block. The varied interfacial and surface energies of the PEO domains and the overall reduction of the crystalline phase in PS-b-PEO/resorcinol films appear to be strictly related to the morphological changes occurring by complexation.  相似文献   

13.
Crystallization-driven self-assembly (CDSA) was employed for the preparation of monodisperse cationic cylindrical nanoparticles with controllable sizes, which were subsequently explored for their effect on antibacterial activity and the mechanical properties of nanocomposite hydrogels. Poly(ɛ-caprolactone)-block-poly(methyl methacrylate)-block-poly[2-(tert-butylamino) ethyl methacrylate] (PCL-b-PMMA-b-PTA) triblock copolymers were synthesized using combined ring-opening and RAFT polymerizations, and then self-assembled into polycationic cylindrical micelles with controllable lengths by epitaxial growth. The polycationic cylinders exhibited intrinsic cell-type-dependent antibacterial capabilities against gram-positive and gram-negative bacteria under physiological conditions, without quaternization or loading of any additional antibiotics. Furthermore, when the cylinders were combined into anionic alginate hydrogel networks, the mechanical response of the hydrogel composite was tunable and enhanced up to 51%, suggesting that cationic polymer fibers with controlled lengths are promising mimics of the fibrous structures in natural extracellular matrix to support scaffolds. Overall, this polymer fiber/hydrogel nanocomposite shows potential as an injectable antibacterial biomaterial, with possible application in implant materials as bacteriostatic agents or bactericides against various infections.  相似文献   

14.
In order to control microphase separation of polystyrene-silica nanocomposites, perhydropolysilazane (PHPS), which is a preceramic of silica, and epoxidized poly(styrene-block-butadiene-block-styrene) triblock copolymer [E-SBS, Mw = 8.0 × 104, styrene: 40 mol%, degree of epoxidization of butadiene: 20 mol%] or poly(styrene-block-butadiene-block-styrene) triblock copolymer [SBS, Mw = 1.40 × 105, styrene: 30 mol%] as templates of microphase separation were blended, following the calcination of composites in steam at 60°C. Well-arranged microphase separation was formed with E-SBS, though the macrophase separation was formed with SBS. The morphology of the microphase separation of the composites with E-SBS and PHPS was widely controlled by varying the PHPS content based on Molau's law. Silica domains were formed in polybutadiene domains. NMR analysis indicated the interaction between silanyl group of PHPS and epoxy group in E-SBS. The composites on the substrate were highly transparent and the surface of the composite with 73.5 vol% of silica was harder than 4H.  相似文献   

15.
The morphologies of thin, substrate-free block copolymer films have been examined by cross-sectional TEM. Two poly(styrene-b-butadiene) diblock copolymers were studied: one that forms PS cylinders and the other that forms PB cylinders in the bulk. Films were annealed while supported by metal TEM grids, embedded, and ultramicrotomed in crosssection. We find that at the metal support the film forms a meniscus-like region, or Plateau border, which exhibits the bulk morphology. Away from the border, the film thickness decreases and regions of terraced in-plane cylinder domains occur until a minimum thickness is reached. The minimum thickness region of the PB majority copolymer in cross-section shows a PS interlayer penetrated by a hexagonal array of circular PB channels that connect upper and lower PB surface layers, and a total thickness of 25–27 nm. The minimum thickness region of the PS majority copolymer in plan view shows no image contrast, but in cross-section reveals a continuous PS interlayer covered by layers of PB, and a total thickness of 20 nm. Comparisons with the chain dimensions suggest a bilayer arrangement for both morphologies with strongly perturbed chain conformations in the surface layers. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
The surface molecular motion of polymeric solids was investigated on the basis of scanning force microscopic and temperature-dependent X-ray photoelectron spectroscopic measurements. The surface of the monodisperse polystyrene films was in a glass-rubber transition state even at 293 K in the case of number-average molecular weight less than ca. 30k. The surface glass transition temperature, Tgs for the symmetric poly(styrene-block-methyl methacrylate) diblock copolymer films were much lower than those for the bulk samples. A remarkable depression of Tg at the air-polymer interface was explained by the surface localization of chain end groups.  相似文献   

17.
Summary: Polystyrene‐block‐poly(ethylene oxide) (SEO) block copolymer thin films, in which CdS clusters have been sequestered into the PEO domains of the SEO block copolymers, are found to induce the morphological transformation of PEO from cylinders to spheres, as shown by using atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). This transformation is caused by the presence of hydrogen‐bonding interactions between surface‐hydroxylated CdS and PEO, as confirmed by nuclear magnetic resonance (NMR) studies.

Morphological transformation of PEO cylinders into CdS/PEO spheres by hydrogen‐bonding interactions between surface‐hydroxylated CdS and PEO.  相似文献   


18.
Summary Transient bulk creep tests under isothermal conditions at various temperatures were excuted for a cold-setting pure epoxy polymer. The difficulty encountered with transient bulk experiments due to nonlinear variation of free volume with temperature when the specimens were tested in hydrostatic pressure was overcome by applying thelinear compressibility method. For this purpose long thin cylinders made of the material were subjected to internal pressure and the elongation of a generator of the cylinder yielded directly the bulk compliance.The bulk compliance composite curve of the substance was formed by applying the principle of reduced variables. It was shown that the bulk compliance presents a rather weak dispersion, which is extended over a broad time range. The transition region of the curve in the time scale was borader than the shear and extension bulk compliance transition regions. An explanation based on the molecular mechanisms of deformation was given for the similarities apparent between shear and bulk viscoelastic behaviour.Wit 7 fugures in 8 details  相似文献   

19.
An ionically connected polystyrene-block-poly(ethylene oxide) diblock copolymer (PS?+PEO) has been prepared by blending a PEO block functionalized by a dimethylamino group at one extremity with a sulfonic acid terminated PS block. Proton transfer occurs from the sulfonic acid to the dimethylamino group, resulting in the formation of an ion pair acting as a junction between the two polymer blocks. This copolymer was further used to prepare thin films with a cylindrical morphology consisting of PEO cylinders embedded in a PS matrix and oriented perpendicularly to the film surface. Nanoporous thin films with sulfonate groups on the pore walls have been finally obtained after solvent extraction of the PEO microphases. The presence of those sulfonate groups was evidenced by grafting a positively charged fluorescent dye on the pore walls.  相似文献   

20.
In this work, the evolution of the morphology of polypropylene/polystyrene/poly(methyl metacrylate) (PP/PS/PMMA) blends to which graft copolymers polypropylene-graft-polystyrene (PP-g-PS) of 2 compositions (55/45 and 70/30), polypropylene-graft-poly(methyl metacrylate) (PP-g-PMMA), or styrene-block-(ethylene- co-butadiene)-block-styrene (SEBS) was added has been studied. The ternary blends morphologies were predicted using phenomenological models that predict the morphology of ternary blends as a function of the interfacial tension between the blend components (spreading coefficient and free energy minimization). All blends studied presented a core-shell morphology with PS as shell and PMMA as core. The addition of PP-g-PS or SEBS resulted in a reduction of the size of the PS shell phase and, the addition of PP-g-PMMA did not seem to have any effect on the diameter of PMMA. The difference observed between the different morphologies relied on the number of droplets of core within the shell. All the phenomenological models predictions corroborated the experimental results, except when PP-g-PMMA was added to the blend.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号