首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Dynamic light scattering from diblock copolymers in melt and solution in a non-selective solvent reveals different mechanisms for relaxing the composition and orientation fluctuations near the order to disorder transition (ODT). For the former, internal relaxation and copolymer chain diffusion are the main relaxation processes whereas the latter relate to collective orientation of the copolymer chains near the ODT and induced form anisotropy of coherently ordered microstructures below ODT.  相似文献   

2.
Measurements of the diffusion and relaxation of block copolymer chains near the order-disorder transition (ODT) are reported. Forced Rayleigh scattering has been used to determine the diffusivities parallel and perpendicular to the lamellar planes, for poly(ethylene-propylene)-poly(ethylethylene) (PEP-PEE) melts. The anisotropy is relatively weak (i.e., less than a factor of 4), but increases steadily as temperature is decreased. Rheology and flow birefringence have been employed to examine the conformational dynamics in block copolymer solutions. For PEP-PEE in squalane, the stress-optic relation is approximately valid, but the stress-optic coefficient increases in the ordered state. The location of the ODT is consistent with the dilution approximation. For polystyrene-polyisoprene (PS-PI) diblock and triblock copolymers, the stress-optic relation fails completely. There is evidence that the fluctuation regime (i.e., in the disordered state but near the ODT) may be considerably broader in block copolymer solutions than in melts. Furthermore, the onset of structure in the solution is accompanied by substantial form birefringence. In general, the optical signals are more complicated than the Theological ones, but also much more sensitive to small changes in temperature or concentration.  相似文献   

3.
Atomic force microscope technique is widely used for the spatial narrow deposition of molecules inside the bare space of preexisting self-assembled monolayer (SAM) matrix. Using molecular dynamics simulation, we studied the formation of positively patterned SAM from a globule of 1-octadecanethiol (ODT) on predesigned SAM matrix of 1-dodecanethiol (DDT) and effect of temperature on it. The alkyl chains of ODT SAM were densely packed and ordered by means of chemisorption through sulfur atoms. The circular SAM of ODT contained defects due to the molecules those were standing upside down or trapped inside ODT SAM. We found that with the increase of temperature, these defects moved out by flipping of inverted ODT molecules or building spaces to be adsorbed on Au surface. The ODT molecules on the top of the pile of stable circular SAM or those are upside down and trapped disperse in a unique fashion namely serial pushing through which molecules firstly make a free space to enter inside the adsorbed thiol molecules and then push neighboring molecules to get enough space to be adsorbed on the gold surface. The stability of ODT SAM was confirmed by analyzing different structural properties such as tilt angle, tilt orientation. and backbone orientation. We also calculated the diffusion coefficient of the ODT molecules which were on the top of SAM island. © 2019 Wiley Periodicals, Inc.  相似文献   

4.
Simulations of self-assembled monolayers (SAMs) are performed to interpret experimental measurements of ultrafast approximately 1 GPa (volume compression deltaV approximately 0.1) planar shock compression dynamics probed by vibrational sum-frequency generation (SFG) spectroscopy (Lagutchev, A. S.; Patterson, J. E.; Huang, W.; Dlott, D. D. J. Phys. Chem. B 2005, 109, XXXX). The SAMs investigated are octadecanethiol (ODT) and pentadecanethiol (PDT) on Au(111) and Ag(111) substrates, and benzyl mercaptan (BMT) on Au(111). In the alkane SAMs, SFG is sensitive to the instantaneous orientation of the terminal methyl; in BMT it is sensitive to the phenyl orientation. Computed structures of alkane SAMs are in good agreement with experiment. In alkanes, the energies of gauche defects increase with increasing number and depth below the methyl plane, with the exception of ODT/Au where both single and double gauche defects at the two uppermost dihedrals have similar energies. Simulations of isothermal uniaxial compression of SAM lattices show that chain and methyl tilting is predominant in PDT/Au, ODT/Ag and PDT/Ag, whereas single and double gauche defect formation is predominant in ODT/Au. Time-resolved shock data showing transient SFG signal loss of ODT/Au and PDT/Au are fit by calculations of the terminal group orientations as a function of deltaV and their contributions to the SFG hyperpolarizability. The highly elastic response of PDT/Au results from shock-generated methyl and chain tilting. The viscoelastic response of ODT/Au results from shock generation of single and double gauche defects. Isothermal compression simulations help explain and fit the time dependence of shock spectra but generally underestimate the magnitude of SFG signal loss because they do not include effects of high-strain-rate dynamics and shock front and surface irregularities.  相似文献   

5.
研究了不同组成的苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)的相形态与粘弹弛豫.用透射电子显微镜(TEM)表征了SBS的形态,结果显示,几种SBS均呈层状结构,随着苯乙烯含量的降低,聚苯乙烯(PS)相的尺寸稍有减小,而聚丁二烯(PB)相尺寸明显增大.用动态流变学方法考察了不同温度下SBS嵌段大分子的弛豫行为,结果表明,苯乙烯含量减少,PS相玻璃化转变和有序-无序转变温度均降低;苯乙烯含量少的,在有序-无序转变过程中呈现出高且宽的损耗峰,表明有序-无序转变过程中能量的耗散主要由两相溶合时分子链间的内摩擦所决定,分子链越长,内摩擦越大,能量耗散越大.  相似文献   

6.
The ultimate properties of liquid crystalline polymers depend upon the achievement of high orientation, usually by means of flow fields. The properties are limited by disorientation which can occur before the product is solidified. Such cooperative orientation and disorientation phenomena also underlie the complex fluid rheology and product microstructure of these materials. The orientation and subsequent disorientation can be followed dynamically by optical and x-ray techniques. Normally, monitoring of orientation is possible only by “fast” techniqes, such as birefringence, these are not applicable to opaque and strongly scattering liquid-crystalline systems. To enable examination of the full dynamic response of concentrated nematic solutions of poly(1,4-phenylene-2,6 benzobisthiazole) (PBZT) the Daresbury Synchrotron Radiation Source was used. PBZT is among the most rigid macromolecules and serves as a good model for other materials of its class. The orientation process determined optically and from x-rays is correlated with fluid rheology and availabel theoretical approaches. During relaxation from near perfect mesogen alignment three principal stages of the disorientation process were identified corresponding to solvent disorientation (first stage of stress relaxation), banding (slow stress relaxation and mesogen disorientation), and finally a very slow banding to polydomain transition. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
An n-alkanethiol, octadecanethiol (ODT), monolayer was successfully prepared onto an oxide-free mild steel (MS) surface under cathodic polarization in a 0.1 M LiCl/CH(3)OH solution containing 1 mM ODT. Cyclic voltammetry (CV) and electrochemical impedance (EIS) and sum frequency generation (SFG) spectroscopy were applied to study and characterize the adsorption of ODT at a MS surface. In 0.1 M LiCl/CH(3)OH solution containing 1 mM ODT, CV of the MS electrode shows a dramatic decrease in charging current and a positive shift in oxidation potential when compared to a solution without ODT. The interfacial capacitance was obtained as 2.52 microF/cm(2) from the impedance data. An average chain tilt angle of 48 degrees for the ODT molecules was deduced from the comparison of the interfacial capacitances of the ODT/MS and ODT/Au monolayers. X-ray photoelectron spectroscopy confirmed the formation of the ODT monolayer on mild steel. The ppp SFG spectrum of the ODT-modified MS features three strong methyl vibrational modes at 2877, 2943, and 2967 cm(-1), indicating the formation of the oriented and densely packed ODT monolayer. However, the appearance of the two weak CH(2) groups' vibrational modes at 2850 and 2914 cm(-1) implies the presence of defects in the ODT monolayer. ODT/Au films were prepared to compare with the ODT/MS films. Orientation analysis of the air/solid interface suggests that the methyl group of ODT/Au films has a tilt angle of 30 degrees , while the methyl group of ODT/MS films has a tilt angle of 23 degrees . Water was found to have an impact on the shape of the SFG spectra of ODT/MS. This suggests that the solution penetrated through the defects to reach the MS surface.  相似文献   

8.
We present a theoretical investigation of the tracer diffusion of diblock copolymers and homopolymers in a thermally fluctuating block copolymer melt above the order-disorder transition (ODT) temperature. Entanglement effects and differences in monomeric friction coefficients are ignored; hence, the theory should be most applicable to short copolymers with rheologically similar blocks. Overall, we find that the diffusion rates of both tracer block copolymers and homopolymers in a block copolymer melt are suppressed when compared with diffusivities in a strictly homogeneous medium with the same average composition. This mobility suppression is due to thermally excited composition fluctuations in block copolymer melts near the ODT; the latter result in transient potential barriers to diffusion. We explore the dependence of the tracer diffusion coefficient on molecular weights and compositions of both matrix and tracer, as well as temperature. A comparison of our theoretical predictions to recent experiments by T. Lodge and coworkers shows qualitative agreement. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The dielectric properties of poly(vinylidene fluoride) have been studied in the frequency range 10 Hz to 100 kHz at temperatures between ?196 and 150°C. Three dielectric relaxations were observed: the α relaxation occurred near 130°C, the β near 0°C, and the γ near ?30°C at 100 kHz. In the α relaxation the magnitude of loss peak and the relaxation times increased not only with increasing lamellar thickness, but also with decrease of crystal defects in the crystalline regions. In the light of the above results, the α relaxation was attributed to the molecular motion in the crystalline regions which was related to the lamellar thickness and crystal defects in the crystalline phase. In the β relaxation, the magnitude of the loss peak increased with the amount of amorphous material. The relaxation times were independent of the crystal structure and the degree of crystallinity, but increased slightly with orientation of the molecular chains by drawing. The β relaxation was ascribed to the micro-Brownian motions of main chains in the amorphous regions. The Arrhenius plots were of the so-called WLF type, and the “freezing point” of the molecular motion was about ?80°C. The Cole-Cole distribution parameter of the relaxation time α increased almost linearly with decreasing temperature in the temperature range of the experiment. The γ relaxation was attributed to local molecular motions in the amorphous regions.  相似文献   

10.
Time-resolved and spatially resolved infrared spectra (line images) of self-assembled monolayers of octadecylthiol (ODT) on gold substrates were investigated by planar array infrared (PA-IR) spectroscopy, with a grazing incidence reflection attachment. It was observed that PA-IR spectra with a good signal-to-noise ratio that is comparable to those obtained from Fourier transform infrared spectroscopy could be acquired with a significantly shorter collection time. Focusing on the peak intensities and peak positions of the CH2 asymmetric stretch (approximately 2918 cm(-1)) and the CH3 symmetric stretch (approximately 2960 cm(-1)), respectively, the molecular orientation and organization of the monolayers were determined. The ODT formed a uniform monolayer on the surface of the gold whether it was deposited within 1-2 s or over a 40 h period. Disordered monolayers formed instantly, and with an increase in dipping time, the monolayer became more ordered, becoming highly ordered after dipping times of many ( > 24) hours.  相似文献   

11.
Aggregation of silver colloidal particles in the hydrosol via chemisorption of octadecanethiol (ODT) molecules was investigated based on in situ UV–visible transmission and infrared attenuated total reflection (ATR) measurements. As‐prepared silver hydrosol exhibits a single absorption peak at 395 nm because of the plasma resonance of the metal particles. Upon addition of ODT‐dissolved ethanol to the hydrosol, the resonance band red‐shifts and broadens, the detailed features of which depend on the ODT concentration and elapsed time. Both the red‐shift and the broadening are attributed to particle aggregation in the solution via ODT chemisorption. Aggregation on a germanium prism surface by the addition of ODT‐dissolved ethanol to the hydrosol was investigated using infrared ATR spectroscopy. At moderate ODT concentrations, intense aggregation via ODT chemisorption occurs strongly on the prism surface, allowing observation of ODT absorption bands. Angle‐dependent infrared ATR measurements for the ethanol and ODT molecules at the prism/solution interface clearly show that aggregation on the prism surface proceeds via the exclusion of ethanol. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Laser-driven approximately 1 GPa shock waves are used to dynamically compress self-assembled monolayers (SAMs) consisting of octadecanethiol (ODT) on Au and Ag, and pentanedecanethiol (PDT) and benzyl mercaptan (BMT) on Au. The SAM response to <4 ps shock loading and approximately 25 ps shock unloading is monitored by vibrational sum-frequency generation spectroscopy (SFG), which is sensitive to the instantaneous tilt angle of the SAM terminal group relative to the surface normal. Arrival of the shock front causes SFG signal loss in all SAMs with a material time constant <3.5 ps. Thermal desorption and shock recovery experiments show that SAMs remain adsorbed on the substrate, so signal loss is attributed to shock tilting of the methyl or phenyl groups to angles near 90 degrees. When the shock unloads, PDT/Au returns elastically to its native structure whereas ODT/Au does not. ODT evidences a complicated viscoelastic response that arises from at least two conformers, one that remains kinetically trapped in a large-tilt-angle conformation for times >250 ps and one that relaxes in approximately 30 ps to a nearly upright conformation. Although the shock responses of PDT/Au, ODT/Ag, and BMT/Au are primarily elastic, a small portion of the molecules, 10-20%, evidence viscoelastic response, either becoming kinetically trapped in large-tilt states or by relaxing in approximately 30 ps back to the native structure. The implications of the observed large-amplitude monolayer dynamics for lubrication under extreme conditions of high strain rates are discussed briefly.  相似文献   

13.
This paper compares the properties of self-assembled monolayers (SAMs) derived from octadecylisocyanide (ODI) and octadecanethiol (ODT) on polycrystalline Pt substrates. Both monolayers formed at a similar rate using 1.0 mM solutions in ethanol and achieved a thickness of 22-23 A after 24 h as determined by ellipsometry measurements. The advancing contact angles of ODI and ODT monolayers were found to be 113 and 117 degrees, respectively, suggesting a slight difference in structure between them. X-ray photoelectron spectroscopy revealed that SAMs of ODT were more stable than those of ODI, which was supported by experiments that probed desorption of these layers in prewarmed hexadecane. Cyclic voltammetry measurements indicated that both monolayer systems could diminish electron-transfer rates substantially, although ODT monolayers were more effective and robust than their ODI counterparts. The resistance of the SAMs to ion penetration differed in a similar way, and a microcontact-printed monolayer of ODT could protect the underlying Pt better in an HCl/Cl2-based etch process than the one formed from ODI.  相似文献   

14.
Octadecanethiol (ODT) is known to form self-assembled monolayer on noble metal surfaces which has potential technological applications. Langmuir-Blodgett (LB) technique is another useful method of obtaining highly ordered assembly of molecules. It is of interest to find whether ODT molecules can also form a stable Langmuir monolayer which facilitates the preparation of LB films. In literature, it has been reported that ODT molecules form an unstable Langmuir monolayer. We have studied the stability of the monolayer of the ODT molecules at air-water interface using surface manometry and microscopy techniques. We find the monolayer to be stable on ultrapure water of resistivity greater than 18MOmega cm. However, the behavior changes in the presence of even small amount of additives like NaOH or CdCl2 in the subphase. Our AFM studies on the LB films of ODT deposited from ion-free ultrapure water showed streak-like bilayer domains. The LB films of ODT deposited from CdCl2 containing aqueous subphase yield dendritic domains of the complexed unit grown over ODT monolayer. These nanostructures on surfaces may have potential applications in molecular electronics.  相似文献   

15.
Interest in the properties of organized monolayers has grown enormously in recent years because these monolayers can provide a means to control the interface at a molecular level1. The self-assemblies of alkanethiols and their derivatives were probably the most intensively studied due to their stability, well-packed structure, ease in preparation, and flexibility in designing the tail group2. The adsorption kinetics of thiol monolayer has been studied by using several techniques, including con…  相似文献   

16.
The effect of hydrocarbon oil incorporation on the rheological and phase behaviors of poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) has been investigated. SEBS‐A1 (neat SEBS) shows a presence of very long relaxation time mode even at the highest temperature carried out here. On the other hand, G′ of SEBS‐A3 (oil concentration = 50 wt %) drastically decreases with increase of temperature at a critical temperature, which can be assigned to be order–disorder transition (ODT). The critical temperature was determined by two rheological criteria. Incorporation of hydrocarbon oil affects the ODT temperature. The rheological response is very sensitive to a few temperature increases around the ODT temperature. Above the critical temperature, G′ finally yields the terminal flow in the low frequency range. The morphological observation at various temperatures was determined using atomic force microscopy (AFM) equipped with environmental controller. This enabled in situ observation of structural change of SEBS induced by temperature and phase transition. We found that the layered texture, mostly aligned along the surface can be seen for SEBS‐A1 ranging from room temperature to 230 °C, though the image contrast reduced by an increase of temperature. SEBS‐A3 showed sphere domains at room temperature and also remains the structure at a critical temperature. The phase separated structure disappeared almost completely above ODT temperature, which was confirmed by the rheologial criteria. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 955–965, 2009  相似文献   

17.
We have investigated the transport mechanism of the inks most typically used in dip-pen nanolithography by patterning both 16-mercaptohexadecanoic acid (MHDA) and 1-octadecanethiol (ODT) on the same Au{111} substrate. Several pattern geometries were used to probe ink transport from the tip to the sample during patterning of both dots (stationary tip) and lines (moving tip). When ODT was written on top of a pre-existing MHDA structure, the ODT was observed at the outsides of the MHDA structure, and the transport rate increased. In the reverse case, the MHDA was also observed on the outsides of the previously patterned ODT features; however, the transport rate was reduced. Furthermore, the shapes of pre-existing patterns of one ink were not changed by deposition of the other ink. These results highlight the important role hydrophobicity plays, both of the substrate as well as of the inks, in determining transport properties and thereby patterns produced in dip-pen nanolithography.  相似文献   

18.
In this work, octadecanethiol (ODT) was demonstrated to form ordered monolayers at either electrochemically reduced or oxidized Zn surfaces, by means of sum frequency generation (SFG) spectroscopy, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The SFG spectra of ODT-modified Zn electrodes featured three methyl group resonances in the C-H vibrational region (2800-3100 cm(-1)). A significant decrease in interfacial capacitance and an increase in charge-transfer resistance were observed in EIS measurement after ODT modification. The alkane chain tilt angle of ODT within a monolayer at the Zn surface was estimated as 0 degrees with respect to the surface normal by interfacial capacitance measurement via EIS. CV and SFG investigation revealed that ODT monolayers undergo reductive desorption from the Zn electrode in 0.5 M NaOH at -1.66 V (vs SCE) and in 0.5 M NaClO4 at -1.62 V. The integrated charge consumed to the desorption of ODT is determined as 87 mC/cm2 from the reductive peak on CV curve, resulting in a coverage of 9.0 x 10(-10) mol/cm2 (5.4 x 10(14) molecules/cm2) if assuming the reduction follows a one-electron process. ODT monolayers show corrosion protection to underlying zinc at the early immersion stage in base, salt, and acid media. However, the protection efficiency was reduced with immersion time due to the presence of defects within the monolayers.  相似文献   

19.
Infrared measurements of the dicroic ratio of poly-(methyl methacrylate) absorption bands provide a valuable method for determining the orientation as well as the relaxation of chains during stretching. Different strain rates and temperatures of stretching were used. Orientation relaxation was determined and a master curve was obtained at a reference temperature TO = 135°C. The master curve shows that orientation relaxation behaves similarly to mechanical relaxation.  相似文献   

20.
The surface-induced alignment and electrooptical (EO) dynamics of a 50-nm-thick liquid crystalline (4-n-pentyl-4'-cyanobiphenyl; 5CB) film were studied at three temperatures: 25 and 33 degrees C (near the crystalline-nematic and nematic-isotropic transition temperatures, respectively) and 29 degrees C (a median temperature in the stability region of the nematic phase). The ZnSe surfaces that entrap the liquid crystal (LC) film have been polished unidirectionally to produce a grooved surface presenting nanometer-scale corrugations, a structure that induces a planar and homogeneous orientation in the nematic phase. The present work attempts to understand the influences of temperature on the surface-induced alignment and corresponding EO dynamics of the material. Step-scan time-resolved spectroscopy measurements were made to determine the rate constants for the electric-field-induced orientation and thermal relaxation of the 5CB film. The field-driven orientation rates vary sensitively with temperature across a range that spans the stability limits of the nematic phase; the relaxation rates, however, vary very little across this same temperature range. We propose that these differences in LC behavior arise as consequence of the interplay of the temperature dependence of the elastic constants, viscosity, and degree of orientational order of the LC medium. A simple theoretical model provides some understanding of these behaviors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号