首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The ? NH2, ? NO2, ? N3, ? NHNO2, and ? ONO2 substitution derivatives of PYX (2,6‐bis(picrylamino)‐3,5‐dinitropyridine) were studied at the B3LYP/6‐31G** level of density functional theory. The sublimation enthalpies and heats of formation (HOFs) in gas phase and solid state of these compounds were calculated. The theoretical predicted density (ρ), detonation pressure (P), and detonation velocity (D) showed that these derivatives have better detonation performance than PYX. The effects of substituent groups on HOF, ρ, P, and D were discussed. The order of contribution of various groups to P and D was ? ONO2 > ? NO2 > ? NHNO2 > ? N3 > ? NH2. Sensitivity was evaluated using the frontier orbital energies, bond orders, bond dissociation enthalpies (BDEs), and characteristic heights (h50). The trigger bonds in the pyrolysis process for these PYX derivatives may be Ring‐NO2, NH? NO2, or O? NO2 varying with the substituents. The h50 of most compounds are larger than that of CL‐20, and those of ? NH2, ? NO2, and most ? ONO2 derivatives are larger than that of RDX. The BDEs of the trigger bonds of all but the ? ONO2 derivatives are sufficiently large. Taking both detonation performance and sensitivity into consideration, some derivatives of PYX may be good candidates of explosives. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
The chemical bonding, electronic structure, and optical properties of metal-organic framework-5 (MOF-5) were systematically investigated using ab initio density functional calculations. The unit cell volume and atomic positions were optimized with the Perdew-Burke-Ernzerhof (PBE) functional leading to a good agreement between the experimental and the theoretical equilibrium structural parameters. The calculated bulk modulus indicates that MOF-5 is a soft material. The estimated band gap from a density of state (DOS) calculation for MOF-5 is about 3.4 eV, indicating a nonmetallic character. As MOFs are considered as potential materials for photocatalysts, active components in hybrid solar cells, and electroluminescence cells, the optical properties of this material were investigated. The detailed analysis of chemical bonding in MOF-5 reveals the nature of the Zn-O, O-C, H-C, and C-C bonds, that is, Zn-O having mainly ionic interaction whereas O-C, H-C, and C-C exhibit mainly covalent interactions. The findings in this paper may contribute to a comprehensive understanding about this kind of material and shed insight into the synthesis and application of novel and stable MOFs.  相似文献   

4.
The electronic structure and properties of the iridathiabenzene and iridaoxabenzene isomers have been investigated using the hybrid density functional mpw1pw91 theory. The energetic aspect shows that trans-ortho-isomer is the most stable isomer. This is compatible with principles of minimum energy and minimum polarizability. Molecular orbital analysis shows a linear correlation between hardness and anisotropic polarizability values for Iridathiabenzene and iridaoxabenzene isomers. The structural and natural bond analysis (NBO) results illustrate electronic delocalization in these rings. Also, the study of non linear optical properties of these molecules indicate a good correlation between βtot and E(HOMO) for iridathiabenzene. The results from natural bond orbital (NBO) analysis have provided insights into Ir—ligand, P—Hapical and P—Hbasal bonding.  相似文献   

5.
A green method—joint mechanical grinding and high pressure homogenization—was used to defibrillate paper pulp into nanofibrils. The prepared cellulose nanofibrils (CNF) were then blended with PVA in an aqueous system to prepare transparent composite film. The size and morphology of the nanofibrils and their composites were observed, and the structure and properties were characterized. The results showed that CNFs are beneficial to improve the crystallinity, mechanical strength, Young’s modulus, T g and thermal stability of the PVA matrix because of their high aspect ratio, crystallinity and good compatibility. Therefore, nano cellulosic fibrils were proven to be an effective reinforcing filler for the hydrophilic polymer matrix. Moreover, the green fabrication approaches will be helpful to build up biodegradable nanocomposites with wide applications in functional environmentally friendly materials.  相似文献   

6.
7.
An overview is provided of the basic features of cellulose acetate of various degree of substitution in the solid and liquid crystalline state as well as in solution. These features represent a necessity for an understanding of the properties of these cellulose derivatives and further for mixed esters, which are not presented in this paper. Specifically, the crystal structure of cellulose triacetate will be addressed as well as structures in dilute and semi-dilute solutions. Thermal, viscoelastic and further properties in the solid state are discussed as well as flow behavior of solutions and their application in molecular weight determination, including false viscosity of commercial 2.5 cellulose acetates.  相似文献   

8.
Various models of cellulose supramolecular organization, such as the models of crystalline micelles, defective crystals, amorphous stacks, folded fibrils, fringed fibrils, crystalline fibrils with the amorphous surface, and various variants of the model of amorphous–crystalline fibrils with straightened chains have been critically analyzed. Specific features, advantages, and drawbacks of various models have been examined. The main methods for the structural studies of cellulose have been discussed. A model of mesomorphous- crystalline fibrils with straightened chains and the paracrystalline surface layer has been advanced, and it has been shown that this model may be used to forecast various properties of cellulose.  相似文献   

9.
Pseudohalogen-containing compounds have attracted significant interest among nonmetal chemists and theorists, not only owing to their potential use in various fields but also due to difficulties in their experimental preparation and characterization. Since its introduction in 1925, the pseudohalide principle has been used extensively and, therefore, a remarkable progress has been made in the experimental and theoretical research on the compounds of this kind. In this work, we review studies on structural investigations and theoretical characterizations of several pseudohalide-containing compounds in order to contribute to better understanding of the chemistry of many such species.  相似文献   

10.
Density functional theory calculations at the B3LYP/aug-cc-pVDZ level have been performed to explore the structure, stability, heat of explosion, density, and the performance properties of amino-, methyl-, and nitroimidazoles. N-Nitroimidazoles have shown lower densities compared with those of C-nitroimidazoles. Detonation properties of title compounds were evaluated by using Kamlet–Jacob semi-empirical equations based on the predicted densities and the calculated heats of detonation. It has been found that some compounds with the calculated densities 2.0 g/cm3, detonation velocities over 9.10 km/s and detonation pressures of about 45 GPa (some even over 50 GPa) may be novel potential high energy materials. The higher performance of nitroimidazole-N-oxides is apparently due to their higher densities (2.0–2.515 g/cm3). Heat of explosion, stability, density, and performance properties are related to the number and relative positions of –NO2, –NH2, and –CH3 groups of the imidazole ring. The designed nitroimidazoles satisfy the criteria of high energy materials.  相似文献   

11.
Nanofibrillated cellulose (NFC) is a renewable and biodegradable fibril that possesses high strength and stiffness resulting from high level hydrogen bonding. Films made from NFC shrink and distort as they transition from a wet state (20 wt% solids) to a state of moisture equilibrium (90 wt% solids at 50 % RH, 23 °C). Material distortions are driven by development of moisture gradients within the fibril network and effectively reduce mechanical performance. For this study, NFC was extracted from softwood holocellulose by first employing a chemical pretreatment [(2,2,6,6-tetramethylpiperidin-1-yl)oxyl catalyzed oxidation] followed by mechanical fibrillation using ultrasound energy. To assess the problem of film distortion, neat NFC films were dried at 50 % RH, 23 °C under one of the following three restraint conditions: fully restrained, partially restrained, and uniaxially drawn. The influence of restraint condition on the resulting physical and mechanical properties was evaluated. Raman and X-ray results showed that fibrils in the uniaxially drawn specimens tended to align with the drawing axis, whereas no in-plane orientation effects were observed for the fully or partially restrained specimens. Fully restrained specimens had a respective strength and stiffness of 222 MPa and 14 GPa in every (in-plane) direction. However, samples that were wet-drawn to a 30 % strain level had a respective strength and stiffness of 474 MPa and 46 GPa in the direction of draw. Mechanical properties for axially drawn specimens had both fibril alignment and fibril straightening contributions.  相似文献   

12.
A model to facilitate the computation of the most stable conformer of associated M · H2O (M being a polar molecule) which depends upon the electrostatic interaction energy between the two associated molecules is proposed and tested. SCF electrostatic potentials for the M molecule and a suitable point charge distribution for H2O were employed in the model computations. Energies predicted by the model are found to be in good agreement with those resulting from an ab initio minimal STO basis SCF treatment of some conformations of the H2O dimer.
Zusammenfassung Ein Modell zur Durchführung der Berechnung des stabilsten Konformeren eines Assoziationskomplexes M · H2O, wobei M ein polares Molekül ist, wird vorgeschlagen und untersucht. Es basiert auf der elektrostatischen Wechselwirkung zwischen beiden Partnern, und zwar wird für das Molekül M der elektrostatische Anteil seines SCF-Potentials und für H2O eine angemessene Punktladungsverteilung zugrunde gelegt. Die resultierenden Energien sind in guter Übereinstimmung mit denen, die sich bei einer ab initio Rechnung mit minimaler STO Basis ergeben.


Work performed with the financial support of the Consiglio Nazionale delle Ricerche, through its Laboratorio di Chimica Quantistica ed Energetica Molecolare.  相似文献   

13.
The conformation energies for monohydrated associates M · H2O, where M stands for oxirane, aziridine, oxaziridine and cyclopropene, have been obtained by using an electrostatic method, tested in a preceding paper, which relies on SCF molecular potentials calculated exactly. Stable associates have been found in the heterogroup region as well as near the bent bonds (single or double).A discussion is made on the errors in calculating thermodynamic properties for such associates in gas phase by using a priori calculations. As a numerical example the free energy change in the association process is compared for two monohydrated associates of aziridine.
Zusammenfassung Die Konformationsenergien für Anlagerungsverbindung M · H2O, wobei M für Oxiran, Aziridin, Oxaziridin und Cyclopropen steht, werden mit einer elektrostatischen Methode berechnet. Dieses Verfahren wurde in einer vorhergehenden Veröffentlichung getestet und beruht auf exakt berechneten SCF-Molekülpotentialen. Stabile Anlagerungsverbindungen wurden für Konformationen gefunden, bei denen das Wassermolekül in der Nähe der Heterogruppe oder der gezogenen Einfach- oder Doppelbindung liegt. Die Fehler bei der Berechnung thermodynamischer Eigenschaften für derartige Anlagerungsverbindungen in der Gasphase werden abgeschätzt. Als ein numerisches Beispiel wird die Differenz der freien Energie bei der Anlagerung für zwei Anlagerungsverbindungen von Aziridin und Molekül Wasser verglichen.
  相似文献   

14.
STO double-zeta SCF wavefunctions for various configurations of the H5O 2 + associate have been computed. Results are discussed and compared with other authors' similar calculations on gaussian bases.An electrostatic picture of the monosolvation of H3O+ is proposed as a fairly satisfactory one.  相似文献   

15.
It has been proved that triphenylamine (TPA) derivatives can be excellent candidates for hole‐transporting materials in organic light‐emitting diodes (OLEDs). To improve on the thermal and morphological stability, a fully diarymethylene‐bridged TPA derivative (FATPA) which has been proven to enhance electroluminescent (EL) efficiency was synthesized. On the basis of FATPA, two series of novel bridged TPA derivatives have been designed by using diarylmethylene (Series A) or dimethyfluorene (Series B) as the linkage between the ortho‐positions of the phenyl rings in this work (see Fig. 1 ). To reveal the relationships between electronic structures and photophysical properties of these novel functional materials, an in‐depth theoretical investigation was elaborated via quantum chemical calculations using the density functional theory (DFT) and time‐dependent density functional theory (TD‐DFT) methods. In addition, the feasibility of using these bridged TPA derivatives as host in the device of ITO/MoO3/NPB/mCP/host:Ir(ppy)3/TAZ/LiF/Al was also evaluated, which including the discussion to their energy levels match with adjacent layers and energy transfer from host to guest. These calculated results show that photophysical properties can be easily tuned by the introduction of various substituent groups into the bridged TPA derivatives, such as the highest occupied molecular orbitals (HOMOs), the lowest unoccupied molecular orbitals (LUMOs), the energies difference between the HOMOs and LUMOs (ΔH‐L), the lowest singlet (ES) and triplet (ET) excitation energies, ionization potentials (IPs), electron affinities (EAs), reorganization energies (λ) and the absorption and emission spectra, indicating that these bridged TPA derivatives have great potential applications for OLEDs. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   

16.
A novel cellulose-based polyampholyte derivative, carboxylethyl quaternized cellulose (CEQC), was homogeneously synthesized by introducing positively charged quaternary ammonium groups and negatively charged carboxyl groups to the backbone of cellulose. The structure and dilute solution properties of CEQCs were characterized with elemental analysis, FTIR, NMR, viscometer, light scattering and zeta-potential measurement. The nitrogen content and total degree of substituent of acylamino and carboxyl groups increased with an increase of the molar ratio of acrylamide to the anhydroglucose unit of quaternized cellulose (QC). The salt-resistance of CEQC was improved remarkably by introducing opposite charged carboxyl to the QC chains. The intrinsic viscosity of the prepared polyampholytes was found to be very sensitive to the pH of the solutions. CEQC-1, the sample with relative low content of carboxyl groups, behaved as a classical cationic polyelectrolyte. However, CEQC-2 and CEQC-3, the samples with higher content of carboxyl groups, displayed typical polyampholyte behavior, and the isoelectric points (IEP) were determined to be 5.0 and 3.8 respectively. This work provided a facile method for the synthesis of novel cellulose-based polyampholytes with different IEP.  相似文献   

17.
Cellulose whiskers were prepared from wood- and cotton-based microcrystalline cellulose and dried by two methods: freeze-drying or air-drying. The effect of drying method on the properties and structure of the whiskers were studied. Furthermore, the influence of the source of cellulose on the nanoscale structure was investigated. Drying method was observed to slightly influence the thermal stability of cellulose whiskers, whereas the char residue varied significantly depending on the drying process performed. Small- and wide-angle X-ray scattering and solid state nuclear magnetic resonance spectroscopy were used to examine the crystallinity and nanoscale structure of the dried whiskers. It was observed that the crystal structure and crystallinity of cellulose whiskers remained during all treatments, whereas their nanoscale structure was significantly influenced by drying method, neutralization, and source of cellulose. Relationships between thermal behavior and nanoscale structure were reported and discussed.  相似文献   

18.
本文将3,4-次乙烯二氧噻吩(VDOT)与噻吩并[3,4-b]吡嗪(TP),呋喃并[3,4-b]吡嗪(FP)和6H-吡咯并[3,4-b]吡嗪(PP)组合,获得了一系列3,4-次乙烯二氧噻吩衍生物.采用密度泛函理论(DFT)在B3LYP/6-31G*理论水平下对其单体、低聚物和聚合物的结构和电子性质进行了深入的理论研究.通过分析键长的变化、中心键性质,Wiberg键级(WBI)以及核独立化学位移,发现随着聚合度的增加物质的共轭性也随之增加.为了了解不同的VDOT与TP、FP、PP比例对电子性质的影响,对V-P比例为1:1、1:2和2:1时的计算结果进行了对比分析,结果表明,V-P比例为1:2化合物共轭性最好,而2:1的共轭性最差.由于1:2的二聚物具有较大的电子迁移速率,其相应的聚合物可能是潜在的电子传输材料.同时,聚合物的能带结构显示V-P比例为1:1的聚合物(包括(VDOT-TP)n,(VDOT-FP)n和(VDOT-TP)n)具有相对低的带隙和很宽的带宽,可以做为潜在的导电材料.另外,(VDOT-BTP)n和(VDOT-BFP)n有着非常低的带隙(分别为0.73和0.87eV),且拥有合适的带宽,也是良好的本征导电材料.  相似文献   

19.
The structural and electronic properties of perylene molecule, dimers, and excimers have been computationally studied. The present work represents the first systematic study of perylene molecule and dimer forms by means of long‐range corrected time‐dependent density functional theory (TDDFT) approaches. Initially, the study explores the photophysical properties of the molecular species. Vertical transitions to many excited singlet states have been computed and rationalized with different exchange‐correlation functionals. Differences between excitation energies are discussed and compared to the absorption spectrum of perylene in gas phase and diluted solution. De‐excitation energy from the relaxed geometry of the lowest excited singlet is in good agreement with the experimental fluorescence emission. Optimization of several coplanar forms of the perylene pair prove that, contrary to generalized gradient approximation (GGA) and hybrid exchange‐correlation functionals, corrected TDDFT is able to bind the perylene dimer in the ground state. Excitation energies from different dimer conformers point to dimer formation prior to photoexcitation. The fully relaxed excimer geometry belongs to the perfectly eclipsed conformation with D2h symmetry. The excimer equilibrium intermolecular distance is shorter than the separation found for the ground state, which is an indication of stronger interchromophore interaction in the excimer state. Excimer de‐excitation energy is in rather good agreement with the excimer band of perylene in concentrated solution. The study also scans the energy profiles of the ground and lowest excited states along several geometrical distortions. The nature of the interactions responsible for the excimer stabilization is explored in terms of excitonic and charge resonance contributions. © 2015 Wiley Periodicals, Inc.  相似文献   

20.
The crystal structural, electronic, optical and thermodynamic properties of SrSi are investigated by using the first-principles plane-wave pseudopotential density function theory within the generalized gradient approximation (GGA). We have calculated the ground states properties and they are in good agreement with the available experimental data and other theoretical results. We have obtained the electronic structure and density of states, and the results showed that both of Immm and Cmcm phases are metal material. The elastic properties such as elastic constants, shear modulus, Young's modulus and Poisson's ratio are obtained for the first time. Furthermore, the optical properties are reported for radiation up to 30 eV. Finally, the thermodynamic properties of Cmcm phase such as free energy, entropy, enthalpy, heat capacity and Debye temperature are given for reference.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号