首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A reaction of the potassium salts of RC(S)NHP(S)(OiPr)2 (R = PhNH, HL I; Ph, HL II) with a mixture of AgNO3 and Ph2P(CH2)1 − 3PPh2 or Ph2P(C5H4FeC5H4)PPh2 in aqueous EtOH/CH2Cl2 leads to [Ag2(Ph2PCH2PPh2)2LINO3] ( 1 ), [Ag{Ph2P (CH2)2PPh2}LI,II] ( 2, 6 ), [Ag{Ph2P(CH2)3PPh2}LI,II] ( 3, 7 ), [Ag{Ph2P(C5H4FeC5H4)PPh2}LI,II] ( 4, 8 ), and [Ag2(Ph2PCH2PPh2)LII2] ( 5 ) complexes. The structures of these compounds were investigated by 1H and 31P{1H} NMR spectroscopy and elemental analyses. It was established that the binuclear complexes 1 and 5 are luminescent in the solid state at ambient conditions. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:386–391, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20627  相似文献   

2.
Yellow needle‐shaped crystals of the title compound, {[Ag(C30H22N4)][Ag(NO3)2]}n, were obtained by the reaction of AgNO3 and 9,10‐bis(benzimidazol‐1‐ylmethyl)anthracene (L) in a 2:1 ratio. The asymmetric unit consists of two AgI cations, one half L ligand and one nitrate anion. One AgI cation occupies a crystallographic inversion centre and links two N‐atom donors of two distinct L ligands to form an infinite one‐dimensional coordination polymer. The second AgI cation lies on a crystallographic twofold axis and is coordinated by two O‐atom donors of two nitrate anions to form an [Ag(NO3)2] counter‐ion. The polymeric chains are linked into a supramolecular framework via weak Ag...O [3.124 (5) Å] and Ag...π (2.982 Å) interactions (π is the centroid of an outer anthracene benzene ring). The π interactions contain two short Ag...C contacts [2.727 (6) and 2.765 (6) Å], which can be considered to define Ag–η2‐anthracene bonding interactions. In comparison with a previously reported binuclear AgI complex [Du, Hu, Zhang, Zeng & Bu (2008). CrystEngComm, 10 , 1866–1874], this new one‐dimensional coordination polymer was obtained by changing the metal–ligand ratio during the synthesis.  相似文献   

3.
CpFe(CO)I(η1-Ph2PCH2P(O)Ph2) 2 was obtained in small yield from reaction of [CpFe(CO)]2[μ-(Ph2P)2CH2] with diiodine in benzene, or prepared in 82% yield on treating CpFe(CO)I(η1-Ph2PCH2PPh2) 1 with H2O2. Compound 2 crystallizes in the space group P21/n, with a = 8.441(2) Å, b = 10.054(2) Å, c = 33.343(8) Å, β = 92.33(2)°, Z = 4, V = 2827(1) Å3, RF = 0.057, and Rw = 0.056.  相似文献   

4.
Co4(μ3-S)8(Ph2PCH2sP(O)Ph2)6, MW = 3012.5, space group R3 , has the hexagonal parameters, a = 26.764 (10), c = 16.979 (10) Å, V = 10532.8 Å3, Z = 3. Mo Ka radiation, λ = 0.71069 Å, Dc = 1.425 g/cm3, μ = 9.94 cm?3, F(000) = 4650, R = 0.073 and Rw = 0.077 for 1965 observed unique reflections with I > 3σ (I). The molecular structure consists of a distorted octahedral Co4—core. The Co—Co and Co—S distances fall in the range of 2.805—2.838 and 2.213—2.253 Å, respectively.  相似文献   

5.
The synergistic Ag+/X2 system (X=Cl, Br, I) is a very strong, but ill‐defined oxidant—more powerful than X2 or Ag+ alone. Intermediates for its action may include [Agm(X2)n]m+ complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: ( A )Ag‐I2‐Ag( A ), [Ag2(I2)4]2+( A )2 and [Ag2(I2)6]2+( A )2⋅(I2)x≈0.65 form by reaction of Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) with diiodine (single crystal/powder XRD, Raman spectra and quantum‐mechanical calculations). The molecular ( A )Ag‐I2‐Ag( A ) is ideally set up to act as a 2 e oxidant with stoichiometric formation of 2 AgI and 2 A . Preliminary reactivity tests proved this ( A )Ag‐I2‐Ag( A ) starting material to oxidize n‐C5H12, C3H8, CH2Cl2, P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that ( A )Ag‐I2‐Ag( A ) will serve as an easily in bulk accessible, well‐defined, and very potent oxidant with multiple applications.  相似文献   

6.
The complex [Ag(2-MePyz)ReO4] (I) is synthesized, and its structure is determined. The crystals are monoclinic, space group P 21/c, a = 7.234(1), b = 15.451(1), c = 8.036(3) Å, β = 92.56(1)°, V = 897.3(2) Å3, ρcalcd = 3.347 g/cm3, Z = 4. Structure I consists of cationic polymer chains [Ag(2-MePyz)] + . Anions ReO 4 ? are weakly bound to Ag+ (Ag...Oaverage 2.693 Å) and join the latter into a supramolecular framework. The Ag+ ion has a linear coordination (NAgN 177.9(2)°, distances Ag-N 2.223(5) and 2.242(5) Å).  相似文献   

7.
The reaction of Ag2SO4 and bpp (bpp = 1,3‐bis(4‐pyridyl)propane) in H2O afforded the complex [Ag2(bpp)2(SO4) · 6.5H2O·CH3OH]n, 1. The IR and TGA have been recorded and the structure has been determined. Crystal data for 1: Space group C2/c, a = 17.885(4), b = 25.230(6), c = 8.832(2) Å, β = 105.437(4)°. V = 3841(1) Å3, Z = 8 with final residuals R1 = 0.0710 and wR2 = 0.1620. The complex shows a three‐dimensional supramoleclar structure constructed with two‐dimensional infinite [Ag2(bpp)2]n sheetlike layers pillared by Ag‐Ag interactions and Ag····O (SO4) interactions in the solid state.  相似文献   

8.
In the title compound {alternative name: poly­[silver(I)‐μ‐(3‐­amino‐2‐chloro­pyridine)‐μ‐nitr­ato]}, [Ag(NO3)(C5H5ClN2)]n the AgI atom is in an irregular AgN2O3 geometry, surrounded by one pyridyl N atom [Ag—N 2.283 (5) Å], one amine N atom [Ag—N 2.364 (6) Å] and three O atoms from different nitrate ions [Ag—O 2.510 (6)–2.707 (6) Å]. The Ag ions are bridged by the 3‐amino‐2‐chloro­pyridine ligands into helical chains. Adjacent uniform chiral chains are further interlinked through the NO3 bridges into an interesting two‐dimensional coordination network in the solid.  相似文献   

9.
Poly[[μ4‐4,4′‐bipyridazine‐μ5‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C8H6N4)]·H2O}n, (I), and poly[[aqua‐μ4‐pyridazino[4,5‐d]pyridazine‐μ3‐sulfato‐disilver(I)] monohydrate], {[Ag2(SO4)(C6H4N4)(H2O)]·H2O}n, (II), possess three‐ and two‐dimensional polymeric structures, respectively, supported by N‐tetradentate coordination of the organic ligands [Ag—N = 2.208 (3)–2.384 (3) Å] and O‐pentadentate coordination of the sulfate anions [Ag—O = 2.284 (3)–2.700 (2) Å]. Compound (I) is the first structurally examined complex of the new ligand 4,4′‐bipyridazine; it is based upon unprecedented centrosymmetric silver–pyridazine tetramers with tetrahedral AgN2O2 and trigonal–bipyramidal AgN2O3 coordination of two independent AgI ions. Compound (II) adopts a typical dimeric silver–pyridazine motif incorporating two kinds of square‐pyramidal AgN2O3 AgI ions. The structure exhibits short anion–π interactions involving noncoordinated sulfate O atoms [O...π = 3.041 (3) Å].  相似文献   

10.
The reaction of one equivalent of In with a molten flux of (Ph4P)2Se5 and P2Se5 (1 : 2), at 250 °C gave the (Ph4P)[In(P2Se6)] ( I ). Stoichiometric elemental synthesis at 750 °C produced the Cs5In(P2Se6)2 ( II ). The thin, yellow crystals of ( I ), and the irregular, dark orange crystals of ( II ), appear to be air- and water-stable. Compound ( I ) crystallizes in the monoclinic space group C2/c (no. 15) and at 23 °C: a = 23.127(7) Å, b = 6.564(1) Å, c = 19.083(3) Å, β = 97.42(2)°, V = 2873(1) Å3, Z = 4, final R/Rw = 4.4/5.2%. Compound ( II ) crystallizes in the tetragonal space group P42/m (no. 84) and at 23 °C: a = b = 13.886(1) Å, c = 7.597(2) Å, V = 1464.9(3) Å3, Z = 2, final R/Rw = 3.9/5.1%. Compound ( I ) contains infinite [In(P2Se6)]nn– with a structure related to that of K2FeP2Se6. Compound ( II ) contains the discrete [In(P2Se6)2]5– which can be viewed as a fragment of the [In(P2Se6)]nn– chain.  相似文献   

11.
The reaction of Ag2O and 2-amino-6-methylpyridine (AMP) with nicotinic acid (HNA) and isonicotinic acid (HINA), respectively, afforded two silver(I) complexes, [Ag2(NA)2(AMP)2] n (I) and [Ag2(INA)2(AMP)2] n (II). Both complexes were characterized by elemental analyses and X-ray single-crystal diffraction. Complex I is a pyridine-3-carboxylate bridged polynuclear silver(I) complex, in which the Ag atom is in a tetrahedral geometry, while complex II is a pyridine-4-carboxylate bridged polynuclear silver(I) complex, in which the Ag atom is in a distorted T-shaped geometry. The crystal of I is monoclinic: space group P21/c, a = 8.079(2), b = 17.150(3), c = 8.912(2) Å, β = 98.106(2)°, V = 1222.5(5) Å3, Z = 4. The crystal of II is monoclinic: space group P21/c, a = 7.225(1), b = 12.049(1), c = 15.053(2) Å, β = 102.050(1)°, V = 1281.6(3) Å3, Z = 4.  相似文献   

12.
《Polyhedron》1988,7(14):1289-1298
The following adducts of Group III trialkyls with phosphines have been prepared, either by direct reaction in hydrocarbon solution or by displacement of ether from the metal trialkyl etherate: Me3M·PPh3 (M = Ga, In); Me3In·P(2-MeC6H4)3; (R3M)2·(Ph2PCH2)2 (R = Me, M = Al, Ga, In; R = Et, M = Ga, In; R = Bui, M = Al); (Me3M)3·(Ph2PCH2CH2)2PPh (M = Al, Ga, In) and (Me3M)4·(Ph2PCH2CH2PPhCH2)2 (M = Al, Ga, In). The compounds were analysed by 1H and 31P NMR spectra of (Me3M)2·(Ph2PCH2)2 (M = Ga, In) showed little change between 193 K and room temperature. Thermal dissociation of the adducts in vacuo gave the free metal trialkyl with no detectable contamination by the respective phosphine. Crystals of (Me3M)2·(Ph2PCH2)2 (M = Al, Ga, In) are iso-structural and the molecules contain two distorted tetrahedral metals bridged by the (Ph2PCH2)2; the MP distances are 2.544(4), 2.546(4) and 2.755(4) Å, respectively. The X-ray crystal structure of (Me3Al)3·(Ph2PCH2CH2)2PPh shows the molecule to contain distorted tetrahedral aluminium atoms bonded to each of the three phosphorus atoms, with AlP distances of 2.536(9) and 2.510(9) Å for the terminal and central moieties, respectively; the unit cell contains two such molecules plus one benzene molecule (the crystallizing solvent).  相似文献   

13.
The bis(4‐aminopyridine)silver(I) cation in [Ag(C5H6N2)2]NO3 has the Ag atom on a twofold axis and displays an N—Ag—N angle of 174.43 (15)° and an Ag—N distance of 2.122 (3) Å. The two ligands are planar and the angle between the two ligand planes is 79.45 (9)°. The pyridine rings are stacked in piles with an interplanar distance of 3.614 (5) Å, a distance that strongly suggests that pyridine π–π interactions have an appreciable importance with respect to the non‐bonded crystal organization. The tris(2,6‐diaminopyridine)­silver(I) cation in [Ag(C5H7N3)3]NO3 has Ag—N distances of 2.243 (2), 2.2613 (17) and 2.4278 (18) Å, and N—Ag—N angles of 114.33 (7), 134.91 (7) and 114.33 (7)°. The Ag+ ion is situated 0.1531 (2) Å from the plane defined by the three pyridine N atoms.  相似文献   

14.
The coordination compound [Ag2L2(H2O)2] · 2H2O (I), L = C12H10NO2S has been synthesized by the reaction of AgNO3 with 4-methyl-2-quinolylthioacetic acid (HL) preliminarily neutralized with an equimolar amount of NBu4OH. Its crystal structure has been determined, and luminescence properties have been studied. Crystals of I are monoclinic, space group C2/c, a = 31.239(6) Å, b = 12.056(2) Å, c = 16.846(3) Å, β = 122.17(3)°, V = 5370.4(2) Å3, ρcalc = 1.861 g/cm3, Z = 16. The structure is formed by two crystallographically nonequivalent silver atoms Ag(1) and Ag(2) and two tridentate bridging ligands L coordinated through the S, N, and O atoms. These atoms, together with water molecules, form the coordination environments of the metal atoms with CN = 5 and 4, respectively. The Ag+ ions and the tridentate ligands form infinite [Ag4L4]n bands extended in the [001] direction. The presence of outer-sphere water molecules involved in O–H···O hydrogen bonding is responsible for the formation of a supramolecular framework structure. The photoluminescence spectrum of compound I shows two bands at ~450 and ~485 nm corresponding to the blue spectral range.  相似文献   

15.
Summary Aminoalkanesulphonic acids H2N(CH2) n SO3H, (n = 1, 2 or 3) react with phosphonium salts [R2P(CH2OH)2]Cl (R = Ph or Cy, Cy = cyclohexyl) in the presence of Et3N to give the sulphonated aminomethylphosphines [Et3NH] [(R2PCH2)2N(CH2) n SO3] (R = Ph, n = 1, 2 or 3; R = Cy, n = 1). The single crystal X-ray structure of [Et3NH] [(Ph2PCH2)2N(CH2)2SO3] has been determined. Some NiII, PdII, PtII and RhI complexes of the phosphines have been prepared.  相似文献   

16.
The red complex trans-Mo2(O2CCH3)2(μ-dppa)2(BF4)2, 1 , was prepared by reaction of [Mo2(O2CCH3)2(CH3CN)6][BF4]2 with dppa (dppa = Ph2PN(H)PPh2) in THF. The reactions of Mo2(O2C(CH2)nCH3)4 with dppa and (CH3)3SiX (X = Cl or Br) afforded the complexes trans-Mo2X2(O2C(CH2)nCH3)2(μ-dppa)2 (X = Cl, n = 2, 2; X = Br, n = 2, 3; X = Cl, n = 10, 4 ; X = Cl, n = 12, 5 ). Their UV-vis, IR and 31P{1H}-NMR spectra have been recorded and the structures of 1, 2 and 3 have been determined. Crystal data for 1 : space group P21/n, a = 12.243(1) Å, b = 17.222(1) Å, c = 13.266(1) Å, β = 95.529(1)°, V = 2784.1(6) Å3, Z = 2, with final residuals R = 0.0509 and Rw = 0.0582. Crystal data for 24CH3Cl2: space group P21/n, a = 13.438(1) Å, b = 19.276(1) Å, c = 14.182(1) Å, β = 111.464(1)°, V = 3418.9(6) Å3, Z = 2, with final residuals R = 0.0492 and Rw = 0.0695. Crystal data for 3·4CH2Cl2: space group P21/n, a= 13.579(1) Å, b = 19.425(1) Å, c = 14.199(1) Å, β = 111.881(2)°, V = 3475.6(7) Å3, Z = 2, with final residuals R = 0.0703 and Rw = 0.0851. Comparison of the structural data shows that the effect of the axial ligand on weakening the Mo-Mo bond strength is X? > CH3CN > BF4?. The Tm values are 121.7 °C for 2 , 111.1 °C for 3 and 91.5 °C for 5 , respectively.  相似文献   

17.
The synergistic Ag+/X2 system (X=Cl, Br, I) is a very strong, but ill‐defined oxidant—more powerful than X2 or Ag+ alone. Intermediates for its action may include [Agm(X2)n]m+ complexes. Here, we report on an unexpectedly variable coordination chemistry of diiodine towards this direction: ( A )Ag‐I2‐Ag( A ), [Ag2(I2)4]2+( A ?)2 and [Ag2(I2)6]2+( A ?)2?(I2)x≈0.65 form by reaction of Ag( A ) ( A =Al(ORF)4; RF=C(CF3)3) with diiodine (single crystal/powder XRD, Raman spectra and quantum‐mechanical calculations). The molecular ( A )Ag‐I2‐Ag( A ) is ideally set up to act as a 2 e? oxidant with stoichiometric formation of 2 AgI and 2 A ?. Preliminary reactivity tests proved this ( A )Ag‐I2‐Ag( A ) starting material to oxidize n‐C5H12, C3H8, CH2Cl2, P4 or S8 at room temperature. A rough estimate of its electron affinity places it amongst very strong oxidizers like MF6 (M=4d metals). This suggests that ( A )Ag‐I2‐Ag( A ) will serve as an easily in bulk accessible, well‐defined, and very potent oxidant with multiple applications.  相似文献   

18.
The title compounds, Mo(CO)2(Ph2PCH2PPh2)(Ph2PCH2CH2PPh2), Mo(CO)2(dppm)(dppe) 1, and Mo(CO)2(Ph2PCH2CH2PPh2)(Ph2PCH = CHPPh2), Mo(CO)2(dppe)(cis-vpp) 2, were prepared from Mo(CO)6 and the corresponding bidentate diphosphine ligands in n-decane under nitrogen atomosphere. Crystals of 1 are monoclinic, space group P 21/c, with a = 19.072(3), b = 11.348(3), c = 23.57(1) Å, β = 99.64(3)°, Z = 4, and the final residual R(F) = 0.044 for 4810 observed reflections; data of 2 are triclinic, space group P 1, with a = 12.091(3), b = 12.186(8), c = 18.934(5) Å, α = 96.93(4),β = 108.15(2), γ = 107.08(4)deg;, Z = 2, and the final residual R(F) = 0.058 for 4570 observed reflections. The distortion of compound 1 is more pronounced than that of compound 2, The two Mo-P lengths in the same bidentate chelate ligand for both compounds are different. Among them, the two larger Mo-P bond lengths for compound 2 are similar, but significantly different for 1.  相似文献   

19.
The crystal structure of the title compound has been determined from 6049 X-ray diffractometric intensities with I > 3σ(I), and refined by a least-squares procedure to R = 0.050. The crystals are monoclinic, space group P21/n, a = 13.702(2) b = 14.255(2), c = 39.556(6) Å, β = 94.75(1)°, Z = 4. The structure of the cation displays two different coordination modes of the Ph2PCH2PPh2 ligands. Two of these are bidentate, bridging the Pt-Pt bond [2.769(1)Å] to form a Pt2(μ-Ph2PCH2PPh2)2 nucleus, while the third acts as a monodentate two-electron donor. The hydrido ligand was not located, but its position is inferred from the coordination geometry of the platinum atom to which it is bonded. The metalligand distances are: Pt-P(trans to P) 2.248(3)–2.289(4) and Pt—P(trans to Pt) 2.347(4) Å.  相似文献   

20.
The asymmetric unit of the title compound, [Ag(NH3)2][Ag(C7H5N2O4)2], comprises half an [Ag(NH3)2]+ cation and half an [Ag(anbz)2] anion (anbz is 2‐amino‐5‐nitrobenzoate). Both AgI ions are located on inversion centres. The cation has a linear coordination geometry with two symmetry‐related ammine ligands. The AgI cation in the anionic part shows a rare four‐coordinate planar geometry completed by two chelating symmetry‐related anbz ligands. Intra‐ and intermolecular N—H...O hydrogen bonds create a slightly undulating two‐dimensional supramolecular sheet. Adjacent sheets are only ca 3.3 Å apart. Ag...O, Ag...N and π–π stacking interactions consolidate the packing of the molecules in the solid state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号