首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new side cholesterol-functionalised liquid crystal (LC) copolymer based on aliphatic polycarbonate backbone was synthesised. The chemical structures of the block copolymers obtained in this study were characterised with Fourier Transform Infrared Spectroscopy (FT-IR) and Proton Nuclear Magnetic Resonance (1H NMR) spectra. Their thermal stability and phase behaviours were investigated with thermogravimetric analysis (TGA) measurements, differential scanning calorimetry, and polarising optical microscopy. The molecular organisation in the mesophase was studied by temperature-dependent X-ray diffraction (XRD). As a result, the block copolymer bearing side cholesteryl groups showed a glass transition at 15.8°C and a smectic A (SmA) to isotropic phase transition at 151.3°C on heating cycle. XRD indicated that the block LC copolymer showed an interdigitated molecular arrangement of the mesogenic units within the smectic layers. This partial bilayer structure was similar to the SmA phase formed by polar mesogens.  相似文献   

2.
We report on the phase behavior and microdomain structure of two types of diblock copolymers containing a liquid crystal (LC) block joined to a flexible coil block. Consideration of the symmetry groups of the liquid crystalline phases and of the block copolymer microdomain structures provides a rationale for predicting the possible types of liquid crystalline block copolymer morphologies. Both previously reported and newly discovered structural types are identified. Possible organizational schemes are developed for the mesogens and periodic disclination defects with respect to the intermaterial dividing surfaces separating the liquid crystalline and flexible coil domains. The first type of copolymer investigated has a rod-like LC block whereas the second type copolymer has a side chain LC block. Five different rod-coil diblocks based on poly(hexyl isocyanate-b-styrene) P(HIC-b-S) were synthesized by anionic polymerization. Wavy lamellae, zig-zag and arrowhead microdomain morphologies corresponding to smectic-C and smectic-O structures were observed depending on the composition. These layered phases have the director (PHIC chain axis) tilted at various orientations with respect to the layer normal. Side-chain LC diblocks based on functionalized poly(isoprene-b-styrene) P(I-b-S) were also investigated. These polymers were synthesized using polymer analogous chemistry from P(I-b-S) precursors. Three different mesogenic groups were attached to the PI blocks: one based on biphenyl benzoate and two based on azobenzene. The microdomain structures found for the functionalized poly(isoprene side-chain LC-b-styrene) P(ILC-b-S) diblocks are typical of traditional coil-coil diblocks (lamellae and cylinders). However, these morphologies possess an additional smectic layering of the mesogens within the microdomains of the LC block. In the case of the rod-coil diblocks, the transformation from an initially isotropic state to the final microphase separated solid state occurs via nematic and then smectic liquid crystalline states, whereas for the side-chain LC-coil cases, the microphase separation transition occurs prior to development of orientational order. The long-range microdomain order of LC block-coil block copolymers can extend over very large distances due to the influence of the orientational ordering of the LC block.  相似文献   

3.
A series of smectic C* liquid-crystalline (LC) block copolymers were successfully synthesized via the living anionic polymerization of polystyrene with optically active methacrylate monomers containing (S)-2-methylbutyl 4-(4-hydroxyphenylcarbonyloxy)-biphenyl-4′-carboxylate mesogens. These materials are the first reported smectic C* block copolymers. Anionic polymerization in tetrahydrofuran (THF) at −70°C leads to LC block molecular weights of approximately twenty repeating units. The number-average molecular weight of the polystyrene block was varied from 7000 to 20000 to adjust the composition in the block copolymers. Differential scanning calorimetry and optical microscopy indicate that the smectic C* phase is present in the systems over broad temperature ranges.  相似文献   

4.
Liquid crystalline triblock copolymers with LC inner block and amorphous outer blocks have been synthesized by “living” anionic polymerization and investigated using DSC, TEM, and small-angle x-ray diffraction. All samples of poly[styrene-block-2-(3-cholesteryloxycarbonyloxy) ethyl methacrylate-block-styrene] (PS-b-PChEMA-b-PS) show liquid crystalline behavior and phase separation between the blocks. Compared to triblock copolymers with PS inner block (PChEMA-b-PS-b-PChEMA) and diblock copolymers (PS-b-PChEMA) the LC block copolymers with PS outer blocks have the same properties. The LC behavior and the morphology do not depend on the block arrangement; they are only influenced by the volume fractions of the blocks. Those samples in which the liquid crystalline subphase is not continuous (spheres) only a nematic phase was found, whereas in all samples with a continuous liquid crystalline subphase, the smectic A phase of the homopolymer was observed. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
We study the self-assembly of a new family of amphiphilic liquid crystal (LC) copolymers synthesized by the anionic ring-opening polymerization of a new cholesterol-based LC monomer, 4-(cholesteryl)butyl ethyl cyclopropane-1,1-dicarboxylate. Using the t-BuP(4) phosphazene base and thiophenol or a poly(ethylene glycol) (PEG) functionalized with thiol group to generate in situ the initiator during the polymerization, LC homopolymer and amphiphilic copolymers with narrow molecular weight distributions were obtained. The self-assemblies of the LC monomer, homopolymer, and block copolymers in bulk and in solution were studied by small-angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), polarizing optical microscopy (POM), and transmission electron microscopy (TEM). All polymers exhibit in bulk an interdigitated smectic A (SmA(d)) phase with a lamellar period of 4.6 nm. The amphiphilic copolymers self-organize in solution into vesicles with wavy membrane and nanoribbons with twisted and folded structures, depending on concentration and size of LC hydrophobic block. These new morphologies will help the comprehension of the fascinating organization of thermotropic mesophase in lyotropic structures.  相似文献   

6.
The scope for the study of the synthesis and properties of liquid crystalline (LC) block copolymers is briefly outlined. While there are many approaches to the synthesis of LC block copolymers, the use of azo macroinitiators is very versatile and allows one to produce diverse block copolymer architectures. Azo macroinitiators are prepared by cationic or promoted cationic polymerization of tetrahydrofuran (1) or cyclohexene oxide (2), and are then used to initiate the free-radical polymerization of various methacrylates 3,4 or acrylates 5–9 containing mesogenic azobenzene or biphenyl units thereby yielding block copolymers. The AB or ABA block copolymers are microphase-separated and form smectic and/or nematic mesophases similar to the respective LC homopolymers.  相似文献   

7.
The interaction between morphological structure and phase behaviour of a group of LC side group block copolymers have been investigated using DSC, TEM and small angle X-ray diffraction. Generally, phase separation between the two blocks was observed. It was found that in the case of those samples, where the liquid crystalline sub-phase is not continuous (spheres), only a nematic phase is seen, whereas in all samples in which there is a continuous liquid crystalline sub-phase, the smectic A phase of the homopolymer is formed. On the other hand, the block copolymer seems to stabilise the LC-phase and the polymer properties in general, no dependency of the clearing temperatures and of the glass transition temperatures from the molecular weight of the LC blocks has been detected.  相似文献   

8.
A new series of chiral shish-kebab type liquid crystal block copolymers that form the smecticC(Sc~*) phase was synthesized by solution polycondensation. The copolymers were characterized by GPC.DSC. TG, POM. X-ray diffraction and polarimeter. The copolymers 7 entered into liquid crystal phase whenthey were heated to their melting temperatures (T_m) and the copolymers 8 were in liquid crystal phase at roomtemperature with low viscosities. The smectic sanded texture or focal-conic texture were observed on POM.All the chiral block copolymers showed high optical activity. No racemization has happened. Temperature-variable X-ray diffraction study together with POM and polarimetric analysis realized that they are chiralsmectic C(Sc~*) phase. Thus we offer in this report the first example of shish-kebab type liquid crystal blockcopolymers that form a chiral smectic C(Sc~*) phase. The variation of melting and isotropization temperatureswith molecular structure was also discussed.  相似文献   

9.
Liquid crystalline block copolymers are new materials in which multiple molecular interactions can provide the driving force for complex phase behaviors and states of order. Block copolymers containing both liquid crystalline main-chain polyester and side-group polymethacrylate blocks were investigated. They phase separated in the liquid crystalline state and their individual mesophases coexisted. The copolymers responded very differently when either a mechanical or a magnetic field was used for alignment. In the fibers the orientations of the side-group and main-chain smectic planes with respect to the fiber axis depended critically on the block lengths and on their distinct tendencies to align, whereas under a magnetic field the mesogens aligned collectively with their long molecular axis parallel to the field, independent of the copolymer structure.  相似文献   

10.
A series of side‐chain liquid‐crystalline (LC) homopolymers of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with different degrees of polymerization were synthesized by atom transfer radical polymerization (ATRP), which were prepared with a wide range of number‐average molecular weights from 5.1 × 103 to 20.6 × 103 with narrow polydispersities of around 1.17. Thermal investigation showed that the homopolymers exhibit two mesophases, a smectic phase, and a nematic phase, and the phase‐transition temperatures of the homopolymers increase clearly with increasing molecular weights. A series of novel LC coil triblock copolymers with narrow polydispersities was synthesized by ATRP, and their thermotropic phase behavior was investigated with differential scanning calorimetry and polarized optical microscopy. The LC coil triblocks were designed to have an LC conformation of poly[6‐(4‐methoxy‐4′‐oxy‐azobenzene) hexyl methacrylate] with a wide range of molecular weights from 3.5 × 103 to 1.7 × 104 and the coil conformation of poly(ethylene glycol) (PEG) (number‐average molecular weight: 6000 or 12,000) segment. Their characterization was investigated with 1H NMR, Fourier transform infrared spectra, and gel permeation chromatography. Triblock copolymers exhibited a crystalline phase, a smectic phase, and a nematic phase. The phase‐transition temperatures from the smectic to nematic phase and from the nematic to isotropic phase increased, and the crystallization of PEG depressed with increasing molecular weight of the LC block. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2854–2864, 2003  相似文献   

11.
A new class of liquid‐crystalline (LC) homopolymers of poly{11‐[4‐(3‐ethoxycarbonyl‐coumarin‐7‐oxy)‐carbonylphenyloxy]‐undecyl methacrylate} containing a coumarin moiety as a photocrosslinkable unit with various polymerization degrees and their LC‐coil diblock and LC‐coil‐LC triblock copolymers with polystyrene as the coil segment was synthesized with the atom transfer radical polymerization method. All the homopolymers and block copolymers synthesized here exhibited narrow polydispersities, indicating well‐controlled living polymerization. Differential scanning calorimetry, polarized optical microscopy, and wide‐angle X‐ray diffraction confirmed that all the homopolymers and block copolymers exhibit a monolayer smectic A phase. Coumarin moieties in the polymers can be photodimerized under λ > 300 nm light irradiation to yield crosslinked network structures, which improve the thermal stability of a polymer nanostructure because of microphase separation. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2197–2206, 2003  相似文献   

12.
Conformational transitions in thermotropic main-chain polymers of complex chemical structure including homopolymers with possibility of conformational transformations in mesogens and random copolymers (CPLs) containing mesogens of the same type and spacers of different lengths were investigated. It was demonstrated that liquid crystalline (LC) state influences conformational transformations in fragments of chain restraining them in comparison with an isotropic melt. It was found that CPLs studied form LC order of smectic type. Peculiarities in spacers behaviour during transition to LC state ensure formation of such type of LC order. Conclusion about dependence of mechanism of smectic LC order formation on chemical structure of rigid components of CPLs is made.  相似文献   

13.
利用DSC、偏光显微镜和广角X射线衍射(WAXD)等手段研究了含对硝基偶氮苯侧基的丙烯酸酯类均聚物HPn(n=3,4.6)及其与丙烯酸的共聚物Pn(n=3,4,6,8)的相行为,结果表明:HP6可形成向列型液晶相,其相态特征可表示为:Tg,308.9K、TKN342K、TNI401K,HP3和NP4为非液晶聚合物;Pn可形成近晶型液晶相。WAXD结果指出其d/l介于1.40~1.54之间,故其液晶相具有SAd型分子排布特征。对共聚物Pn的变温FTIR研究表明:Pn中存在着-COOH和-NO2的氢键作用,使介晶基团之间的各向异性相互作用增强,有利于形成更加有序和稳定的近晶型液晶相。结合WAXD和FTIR的结果,给出了Pn液晶相的分子排布模型。  相似文献   

14.
A series of main‐chain, thermotropic, liquid‐crystalline (LC), hydrogen‐bonded polymers or self‐assembled structures based on 4,4′‐bipyridyl as a hydrogen‐bond acceptor and aliphatic dicarboxylic acids, such as adipic and sebacic acids, as hydrogen‐bond donors were prepared by a slow evaporation technique from a pyridine solution and were characterized for their thermotropic, LC properties with a number of experimental techniques. The homopolymer of 4,4′‐bipyridyl with adipic acid exhibited high‐order and low‐order smectic phases, and that with sebacic acid exhibited only a high‐order smectic phase. Like the homopolymer with adipic acid, the two copolymers of 4,4′‐bipyridyl with adipic and sebacic acids (75/25 and 25/75) also exhibited two types of smectic phases. In contrast, the copolymer of 4,4′‐bipyridyl with adipic and sebacic acids (50/50), like the homopolymer with sebacic acid, exhibited only one high‐order smectic phase. Each of them, including the copolymers, had a broad temperature range of LC phases (36–51 °C). The effect of copolymerization for these hydrogen‐bonded polymers on the thermotropic properties was examined. Generally, copolymerization increased the temperature range of LC phases for these polymers, as expected, with a larger decrease in the crystal‐to‐LC transition than in the LC‐to‐isotropic transition. Additionally, it neither suppressed the formation of smectic phases nor promoted the formation of a nematic phase in these hydrogen‐bonded polymers, as usually observed in many thermotropic LC polymers. The thermal transitions for all of them, measured by differential scanning calorimetry, were well below their decomposition temperatures, as measured by thermogravimetric analysis, which were in the temperature range of 193–210 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1282–1295, 2003  相似文献   

15.
甲壳型液晶高分子的发展很大程度上依赖于聚合物自组装的发展,而各种可设计、可预测、可调控的自组装策略的涌现,将甲壳型液晶高分子研究推向前所未有的高度,同时也极大地丰富了高分子化学与物理的内容,提升了研究水准.研究表明,侧链"甲壳效应"在调控甲壳型液晶高分子有序结构等方面有着重要作用.本综述从甲壳型液晶高分子设计合成、液晶相态调控、嵌段共聚物自组装和功能化应用等方面,总结和评述了近年来该领域国内的最新研究进展.最后,本综述总结了甲壳型液晶高分子在发展中所面临的主要问题,并对其发展趋势进行了展望.  相似文献   

16.
Using poly(5-{[(4'-heptoxy-4-biphenylyl)carbonyl]oxy}-1-pentyne) as an example, we demonstrate the incorporative accommodation of the rigid polyacetylene backbones and the mesogenic pendants, which leads to a highly ordered smectic (Sm) phase with a frustrated structure. The polymer exhibits a recognizable sheetlike molecular shape due to its rigid backbone and relatively short spacer (three methylene units), and the building block of the liquid crystalline (LC) phase is the whole molecule. In the LC phase, five layers of the molecules stack as a smectic A (SmA) block, and adjacent SmA blocks glide halfway of the molecular width from one to another. In scanning tunneling microscopy (STM) experiments, the STM tip scrape is found to generate a regular nanopattern with periodic electron conductivity, of which the spacing is determined by the side-chain length.  相似文献   

17.
Films of a symmetric liquid‐crystalline/isotropic block copolymer consisting of a smectic LC side‐chain polymer and polystyrene were prepared by solvent casting from solution and from the isotropic melt. By annealing the solvent‐cast film in the SA phase an oriented microphase‐separated film of lamellar morphology was obtained in which both the lamellae of the block copolymer and the smectic layers of the LC block were oriented parallel to the film surface. A lamellar morphology with perpendicular orientation of lamellae and smectic layers was generated by cooling the block copolymer from the melt.  相似文献   

18.
A series of novel multi-arm star side-chain liquid crystalline (LC) copolymers with hyperbranched core moieties were synthesized by atom transfer radical polymerization (ATRP) using a multi-functional hyperbranched polyether as the initiator and chlorobenzene as the solvent. The multi-functional hyperbranched polyether initiator was prepared from poly(3-ethyl-3-(hydroxymethyl)oxetane) (PEHO) and 2-bromo-2-methylpropionyl bromide. The azobenzene side-chain liquid crystalline arms were designed to have an LC conformation of poly[6-(4-methoxy-4-oxy-azobenzene)hexyl methacrylate] with different molecular weights. Their characterization was performed with 1H NMR, size exclusion chromatograph (SEC), differential scanning calorimetry (DSC) and thermal polarized optical microscopy (POM). The multi-arm star side-chain liquid crystalline copolymers exhibited a smectic and a nematic phase, and the phase transition temperatures from the smectic to the nematic phase and from the nematic to isotropic phase increased with increasing the molecular weight of the multi-arm star side-chain liquid crystalline copolymers from 1.78 × 104 to 9.07 × 104.  相似文献   

19.
The interaction between morphological structure and phase behaviour of a LC side group block copolymer has been investigated using DSC, TEM and small angle X-ray diffraction. All samples of Polystyrene-block-2-(3-cholesteryloxycarbonyloxy)ethyl methacrylate (PS-b-PChEMA) show a phase separation between the two blocks. It was found that in the case of those samples where the liquid crystalline sub-phase is not continuous (spheres), only a nematic phase is seen, whereas in all samples in which there is a continuous liquid crystalline sub-phase, the smectic A phase of the homopolymer is formed. On the other hand, the block copolymer seems to stabilize the LC phase; no dependency of the clearing temperatures on the molecular weight of the LC blocks has been observed.  相似文献   

20.
Abstract : A series of comb-like copolymers and homopolymers containing different liquid-crystalline and perfluoralkyl side chains was studied by frequency and temperature dependent dielectric measurements. The structure and the phase behaviour of the systems were characterized by X-ray scattering and differential scanning calorimetry. The dielectric relaxation spectra of these polymers reflect the molecular mobility in bilayer structures formed by the mesogenic or crystalline side chains. By changing temperature it was possible to investigate the molecular motions in the different phases of the copolymers (smectic-crystalline, smectic-isotropic, and isotropic). The homopolymer containing perfluoralkyl side chains and all copolymers show a β-relaxation at low temperatures, which is assigned to local molecular motions. Above the glass transition temperature, all samples exhibit a segmental (α) relaxation with WLF-like temperature dependence in the activation plots. For the polymers forming LC structures only one relaxation process was detected in all phases, i.e. in the smectic, nematic, and isotropic structure or, in case of the copolymers, in the smectic-crystalline and smectic-isotropic double structures. This process was attributed always to the segmental motions, assisted by tumbling motions of the mesogens. The phase transitions are clearly indicated by discontinuities in the dielectric relaxation times and changes in the relaxation strength Δϵ. The dipole reorientations of the mesogens seem to be more restricted by the crystalline layers in the copolymers as by the smectic order of the LC homopolymers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号