首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer-dispersed liquid crystal (PDLC) films were prepared by photochemical polymerisation with a series of (meth)acrylate monomers. The effects of monomer structure on the morphology of polymer networks in the PDLC films were studied. The acrylate monomers without sidegroup chain formed uniform polymer networks. The methacrylate monomers with methyl as their sidegroup chains formed lace-like networks. The size of the LC droplets increased with increasing the length of the flexible chain of both methacrylate and acrylate monomers. Meanwhile, the effects of the morphology of the polymer network on the electro-optical properties of PDLC films were also investigated.  相似文献   

2.
The design of high-performance pervaporation membranes for the selective removal of ethanol from ethyl t-butyl ether (ETBE) was performed by using semi-interpenetrating polymer network (s-IPN) materials. The chosen linear polymer in the s-IPN was a cellulose ester, and the network was formed by photopolymerization of a dimethacrylate, or a dimethacrylate and one or two co-monomers. Membranes with good mechanical properties and moderate to good selectivity were obtained. Large permeability increases without loss in selectivity were observed with s-IPN films formed by cellulose propionate or cellulose butyrate interpenetrated by a network of poly(ethyleneglycol dimethacrylate). The use of dimethacrylate with longer spacers of the poly(ethoxy) type in these materials further increased the permeability. The permeation flux of cellulose acetate-based membranes is improved only when a methacrylate with poly(ethoxy) side chains is incorporated in the network by copolymerization with the poly(ethoxy)-type dimethacrylate. When the poly(ethyleneglycol dimethacrylate) in cellulose butyrate-based s-IPN films increases, the selectivity remains constant, while the film permeability goes through a maximum. The results are interpreted on the basis of a “plasticization” effect exerted on the linear polymer by interpenetrated networks composed of methacrylates with poly(ethoxy) chains. The resulting improved segment mobility favors the permeability at low network contents. The stability of s-IPN membranes in hot liquid mixtures was explained by extended entanglements of the linear polymer with the branches of the network meshes. © 1997 John Wiley & Sons, Ltd.  相似文献   

3.
The morphology and chemical structure of nanosized polytetrafluoroethylene films deposited on the surface of track-etched poly(ethylene terephthalate) membranes by means of radiofrequency magnetron sputtering and electron-beam sputtering of the polymer in a vacuum have been studied using atomic force microscopy and X-ray photoelectron spectroscopy. It has been established that the morphology of films formed with the use of these coating techniques varies considerably. This is due to the size of the deposited polymer particles. The particles formed by the electron-beam sputtering of polytetrafluoroethylene are larger than those produced by magnetron sputtering of the polymer. It has been shown that the chemical composition of the films deposited by electron-beam sputtering in a vacuum is more in line with the composition and structure of the initial polymer than the films obtained by radiofrequency magnetron sputtering.  相似文献   

4.
A novel flexible free-standing films of polyvinyl alcohol (PVA)/silica polymer network dispersed cholesteric liquid crystals (CLC) have been prepared by the sol-gel process. In the hydrolysis of silicon alkoxides tetraethoxysilane (TEOS) processes, the silica having -OH with the -OH groups on PVA formed polymer networks with Si-O-C bonds by dehydration. The cholesteric liquid crystals were incorporated into the networks. The free-standing films were obtained by the spin-coating method. In order to improve the compatibility and microstructure of the cholesteric liquid crystals with PVA/silica polymer networks, the amphiphilic compound of hexadecyl trimethyl ammonium bromide (HDTMA) was introduced into the forming film solutions. Effects of the different ratios of raw materials on the structure of films were investigated. The microscopic morphology of free-standing films and the uniform dispersion of CLCs in the films have been characterized by polarizing optical microscopy (POM), the field emission scanning electron microscope (FESEM), Fourier transform infrared (FT-IR) spectrometer and atomic force microscope (AFM). The free-standing films exhibiting excellent CLC droplets dispersion, mechanical stability, and good flexibility could be useful for flexible displays, switchable optical elements and smart windows.  相似文献   

5.
Over the last 15 years, the layer-by-layer deposition of polyelectrolytes and the growth of polymer brushes from surfaces have become established techniques for the formation of a wide range of thin films. This article discusses the use of these techniques in creating the skin layer of nanofiltration or gas-separation membranes and in functionalizing the interior of membranes for protein adsorption or catalysis. In the case of separation membranes for nanofiltration, the minimal thickness of layer-by-layer films allows for high flux, and the wide range of available polyelectrolytes that can form these films permits the tailoring of membranes for separations such as water softening, the reduction of F (-) concentrations, and the removal of dyes from wastewater. For gas separation, polymers grown from surfaces are more attractive than layer-by-layer coatings because most polyelectrolyte films are not highly gas-selective. Cross-linked poly(ethylene glycol dimethacrylate) films grown from porous alumina exhibit CO(2)/CH(4) selectivities of around 20, and the careful selection of monomers should further improve the selectivity of similar membranes. Both layer-by-layer methods and polymer brushes can also be employed to modify the interior of membranes, and we have utilized these techniques to create catalysts, antibody arrays in membranes, and membrane absorbers for protein purification. Polymer brushes are particularly attractive because they allow the absorption of multilayers of protein to yield membranes with binding capacities as high as 150 mg protein/cm(3). Some challenges in the practical implementation of these systems, such as the economical formation of membranes using highly permeable polymeric supports, and future directions in research on membrane modification with multilayer films and polymer brushes are also discussed herein.  相似文献   

6.
Composite films comprised of bacterial cellulose (BC) and collagen (COL) were developed using BC hydrogel membranes as the base material and COL as the reinforcing material. Glutaraldehyde (GT) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC·HCl) were then used as cross-linking agents to prepare cross-linked BC/COL composite films by a wet chemical method. The effects of chemical cross-linking on the thermal and mechanical properties of composite films were investigated in detail. The COL molecules were adsorbed and deposited inside of 3D nanofiber networks of BC, coated on the surface of BC fibers. Chemical bonds formed between BC molecules, and between BC and COL molecules after cross-linking. Compared with BC, the obtained composite films showed 57.9 and 70.8% improvement in tensile strength after being cross-linked by GT and EDC·HCl, respectively. Cross-linking also enhanced the thermal stability of the specimens.  相似文献   

7.
The results of studying thin fluorocarbon films deposited onto single-crystal silicon plates through electron beam polymerization of hexafluoropropylene from the vapor phase are presented. The films are deposited under the action of an electron beam with an energy of 40 keV at a monomer vapor pressure of 5- 20 hPa. It is shown that plastic solid films consisting of a low-molecular-mass polymer with low thermal stability are formed at a beam current density on the order of 20 μA/cm2, while at current densities on the order of 150 μA/cm2, rigid brittle films of three-dimensional crossl inked polymer are formed with a thermal stability of about 350°C. It is assumed that the films are formed via chain polymerization, which at high current densities, is accompanied by polyrecombination processes leading to efficient chain crosslinking. It is found that polymer clusters are ordered in the course of film formation.  相似文献   

8.
Semi-IPNs were constructed by forming the crosslinking networks via the reaction between BPPO and diamine cross-linkers to overcome the dimensional swelling and methanol-permeation issues of SPEEK.  相似文献   

9.
Single bilayer membranes of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) were formed on ordered nanocomposite and nanoporous silica thin films by fusion of small unilamellar vesicles. The structure of these membranes was investigated using neutron reflectivity. The underlying thin films were formed by evaporation induced self-assembly to obtain periodic arrangements of silica and surfactant molecules in the nanocomposite thin films, followed by photocalcination to oxidatively remove the organics and render the films nanoporous. We show that this platform affords homogeneous and continuous bilayer membranes that have promising applications as model membranes and sensors.  相似文献   

10.
The growth of polymer brushes on polymer substrates is often challenging because of substrate incompatibility with the organic solvents used for initiator attachment. This letter reports the use of layer-by-layer adsorption of macroinitiators and subsequent aqueous ATRP from these immobilized initiators to prepare polymer brushes on polymeric substrates. Polyethersulfone (PES) films and porous membranes were modified with polyelectrolyte multilayer films, and a previously developed polycationic initiator, poly(2-(trimethylammonium iodide)ethyl methacrylate-co-2-(2-bromoisobutyryloxy)ethyl acrylate), was then electrostatically adsorbed onto these polyelectrolyte films. The immobilized macroinitiator is very efficient in initiating the growth of polymer brushes on PES, as demonstrated by aqueous syntheses of poly(2-hydroxyethyl methacrylate) (PHEMA) and poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) films. PHEMA (250 nm thick) and PDMAEMA (40 nm thick) brushes were grown in 2 h from surfaces modified with polycationic initiators. Moreover, this procedure is effective for growing brushes in the pores of PES membranes.  相似文献   

11.
Porous molecularly imprinted polymer membranes and polymeric particles   总被引:1,自引:0,他引:1  
Porous free-standing molecularly imprinted polymer membranes were synthesised by the method of in situ polymerisation using the principle of synthesis of interpenetrating polymer networks and tested in solid-phase extraction of triazine herbicides from aqueous solutions. Atrazine-specific MIP membranes were obtained by the UV-initiated co-polymerisation of methacrylic acid, tri(ethylene glycol) dimethacrylate, and oligourethane acrylate in the presence of a template (atrazine). Addition of oligourethane acrylate provided formation of the highly cross-linked MIP in a form of a free-standing 60 μm thick flexible membrane. High water fluxes through the MIP membranes were achieved due to addition of linear polymers (polyethylene glycol Mw 20,000 and polyurethane Mw 40,000) to the initial mixture of monomers before the polymerization. As a result, typical semi-interpenetrating polymer networks (semi-IPNs) have been formed, where the cross-linked polymer was represented by the atrazine-specific molecularly imprinted polymer, while the linear one was represented by polyethylene glycol/polyurethane. Extraction of the linear polymers from the fully formed semi-IPNs resulted in formation of large pores in the membrane structure. At the same time, extraction of the template molecules lead to formation of the sites in the polymeric network, which in shape and arrangement of functional groups are complementary to atrazine. Reference polymeric membranes were prepared from the same mixture of monomers but in the absence of the template. Recognition properties of the MIP membranes were estimated in solid-phase extraction by their ability to selective re-adsorbtion of atrazine from 10−8 to 10−4 M aqueous solutions. The imprinting effect was demonstrated for both types of the MIP membranes and the influence of the type of the linear compound on their recognition properties was estimated. The recognition properties of the MIP membranes were compared to those of the MIP particles of the same composition. Morphology of the MIP membranes was investigated using the SEM microscopy. High fluxes of the developed membranes together with high affinity and adsorption capability make them an attractive alternative to MIP particles in separation processes.  相似文献   

12.
This work shows that mesoporous polymeric films with spherical and elliptical pores can be obtained by in situ structure inversion of the azo polymer colloid arrays through selective interaction with solvent. The epoxy-based azo polymer contained both the pseudo-stilbene-type azo chromophores and the hydrophilic carboxyl groups. The colloidal spheres of the azo polymer were prepared by gradual hydrophobic aggregation of the polymeric chains in THF-H2O media, induced by a steady increase in the water content. Ordered 2D arrays of the hexagonally close-packed colloidal spheres were obtained by the vertical deposition method. After the solvent (THF) annealing, the ordered 2D arrays were directly transformed to mesoporous films through the sphere-pore inversion. Under the same condition, the 2D arrays composed of the ellipsoidal colloids, which were obtained by the irradiation of a polarized Ar+ laser beam on the colloidal sphere arrays, could be transformed to films with ordered elliptical pores. To our knowledge, this is the first example to demonstrate that mesoporous structures can be directly formed from the colloidal arrays of a homopolymer through structure inversion. This observation can shed new light on the nature of self-assembly processes and provide a feasible approach to fabricate mesoporous structures without the infiltration-removal step. By exploring the photoresponsive properties of the materials, mesoporous film with special pore structure and properties can be expected.  相似文献   

13.
Five one-dimensional coordination polymers were prepared by the reaction of a bent bridging ligand, bis(4-pyridyl)amine (bpa), with an extensive series of AgX salts (X = CF3SO3, PF6, ClO4, NO3). The 1D polymer networks formed with AgCF3SO3 (1), AgPF6 (2.MeCN), and AgClO4 (3.2MeCN) all incorporated MeCN and were found to adopt a zigzag arrangement. The networks formed with AgClO4 (4) and AgNO3 (5) did not contain any solvent and adopted a single-stranded helical arrangement. Two-dimensional H-bonding networks were formed for 1 and 3.2MeCN, with network topologies 4.8(2) and (4, 4), respectively, whereas three-dimensional H-bonded networks of helices were formed for 4, showing an (8, 3)-a network topology, and 5, showing the topology of the alpha-polonium net. The three-dimensional networks both exhibited 4-fold interpenetration. The NO3- anion in 5 appeared to be acting as a template for the 3D structure.  相似文献   

14.
含偶氮苯并噻唑发色团的二阶非线性光学互穿网络聚合物   总被引:9,自引:0,他引:9  
合成了含偶氮苯并噻吩(BT)发色团的聚氨酯/环氧树脂互穿网络聚合物(IPN),其中聚氨酯网络由(丙烯酸β羟丙酯 BT 2甲基丙烯酸酯)共聚物与苯酚封闭的双端异氰酸酯的BT 1反应形成,而环氧树脂网络由含环氧基的BT与含BT的苯二胺反应形成.同时实施这二种反应即形成IPN.IPN经红外光谱、凝胶含量测定及DSC等表征.其薄膜经160℃、85kV电晕极化,由可见光谱测量及一维刚性取向气体模型计算得到宏观二阶非线性光学极化系数χ(2)为218×10-7e.s.u.,在120℃经240h序参数几乎不变.  相似文献   

15.
The effects of treatment in a radiofrequency (RF) discharge plasma on the rate of chemical etching of the tracks made by xenon ions (with an energy of ~1 MeV/nucleon) in poly(ethylene terephthalate) (PETP) films were investigated. The influence of plasma treatment conditions on the structure and properties of nuclear track membranes formed by etching was studied. It was found that the RF plasma treatment of heavy ion-bombarded PETP films leads to a decrease in etchability of both tracks and the starting polymer matrix. The changes in track and matrix etchability due to crosslinking of the polymer surface layer were shown to be responsible for the asymmetry of the track membrane structure.  相似文献   

16.
李斌  姬相玲  张洪杰  姜炳政  倪嘉缵 《化学学报》1998,56(11):1123-1127
通过在溶胶-凝胶过程中引入高分子组分,并将稀土配合物掺杂其中的方法得到了具有良好发光性能的无机/高分子杂化薄膜,它们有很好的韧性和透明性,测定了薄膜的荧光光谱和荧光寿命,发现它们均发射出稀土离子的特征荧光且寿命比本体配合物增长。透射电镜的观察表明配合物在SiO~2/高分子互穿网络中分布较均匀,分散尺度在20~30nm之间。  相似文献   

17.
A breath figure (BF) is the water droplet array that forms when moisture comes in contact with a cold substrate. This water droplet array has been widely utilized in the past two decades as a versatile soft template for the fabrication of polymeric porous films. Accordingly, the ordered pores on the polymer films formed with such a method are named a breath figure array (BFA).The BF templating technique is undergoing rapid development. Several unconventional BF processes have been established to prepare porous films with unique morphologies or primary materials, and various newly developed functionalization techniques have significantly improved the performance of polymeric films with BFA, leading to novel applications, including templates, biosensors, and separation membranes. These recent achievements will be described in this Minireview.  相似文献   

18.
Porous 3D polymer scaffolds prepared by TIPS from PLGA (53:47) and PS are intrinsically hydrophobic which prohibits the wetting of such porous media by water. This limits the application of these materials for the fabrication of scaffolds as supports for cell adhesion/spreading. Here we demonstrate that the interior surfaces of polymer scaffolds can be effectively modified using atmospheric air plasma (AP). Polymer films (2D) were also modified as control. The surface properties of wet 2D and 3D scaffolds were characterised using zeta-potential and wettability measurements. These techniques were used as the primary screening methods to assess surface chemistry and the wettability of wet polymer constructs prior and after the surface treatment. The surfaces of the original polymers are rather hydrophobic as highlighted but contain acidic functional groups. Increased exposure to AP improved the water wetting of the treated surfaces because of the formation of a variety of oxygen and nitrogen containing functions. The morphology and pore structure was assessed using SEM and a liquid displacement test. The PLGA and PS foam samples have central regions which are open porous interconnected networks with maximum pore diameters of 49 microm for PLGA and 73 microm for PS foams.  相似文献   

19.
20.
The results of a kinetic study of the disproportionation reaction of carbon monoxide on the surface of B1–B3 palladium alloy membranes over wide ranges of residence times and temperatures are reported. The specific rates and activation energies of the reaction with the formation of CO2 and atomic carbon adsorbed on the surface were determined. It was found that the rate of reaction on all of the alloys from the B series other than B3-2 was independent of the consumption of CO and the residence time. The catalytic activity of multicomponent palladium alloy membranes in the CO disproportionation reaction was much lower and the activation energy was higher than the corresponding parameters of Pd-(6–10)Ru and Pd-5.5Ni binary alloy membranes. Atomic carbon formed in the reaction on all of the alloys from the B series other than the B3-2 alloy did not form carbon deposits as polymer films, pyrolytic carbon, or soot strongly bound to the surface of each other to result in a decrease in the rate of reaction. On the surface of the B3-2 alloy, atomic carbon initiated the formation of a polymer film weakly bound to the surface, which decreased the rate of reaction. A reaction mechanism was proposed to adequately describe the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号