首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pyridine-2(1H)-thione 5 was synthesized from the reaction of 3-[3-(4-chlorophenyl)-1-phenyl-1H-pyrazol-4-yl]-1-phenylpropenone (3) and cynothioacetamide (4). Compound 5 reacted with halogented compounds 6a–e to give 2-S-alkylpyridine derivatives 7a–e, which could be in turn cyclized into the corresponding thieno[2,3-b]-pyridine derivatives 8a–e. Compound 8a reacted with hydrazine hydrate to give 9. The latter compound reacted with acetic anhydride (10a), formic acid (10b), acetic acid, ethyl acetoacetate, and pentane-2,4-dione to give the corresponding pyrido[3′,2′:4,5]thieno-[3,2-d]pyrimidine 13a,b, pyrazolo[3′,4′:4,5]thieno[3,2-d]pyridine 14 and thieno[2,3-b]-pyridine derivatives 18 and 20, respectively. Alternatively, 8c reacted with 10a,b and nitrous acid to afford the corresponding pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidine 24a,b and pyrido[3′,2′:4,5]thieno[3,2-d][1,2,3]triazine 26 derivatives, respectively. Finally compound 5 reacted with methyl iodide to give 2-methylthiopyridine derivative 27, which could be reacted with hydrazine hydrate to yield the corresponding pyrazolo[3,4-b]-pyridine derivative 29.  相似文献   

2.
4,5-Diaryl-2,3-dihydro-2-mercaptoimidazoles (2a–e) were synthesized. They reacted with chloroacetic acid in gl. acetic acid/Ac 2 O in presence of anhyd. sodium acetate afforded 5,6-diaryl-2,3-dihydro-imidazo[2,1-b]thiazol-3-ones (3a–d). Also these compounds were prepared by the action of chloroacetyl chloride on compounds (2) in pyridine. Compounds (3a–d) on condensation with aromatic aldehydes yield 2-arylmethylene-5,6-diaryl-2,3-dihydroimidazo[2,1-b]-thiazol-3-ones (4a–q). The latter compounds were prepared directly by the reaction of (2) with chloroacetic acid and the aromatic aldehydes. Compounds (3a–d) coupled with aryldiazonium salts in pyridine to give 2-arylhydrazono-5,6-diaryl-2,3-dihydroimidazo[2,1-b]thiazol-3-ones (5a–r). Also compounds (2) when reacted with 2 or 3-bromopropionic acid afford 2,3-di-hydro-5,6-diaryl-2-methylimidazo[2,1-b]thiazol-3-ones (6a–d) and 2,3-di-hydro-6,7-diaryl imidazo-[2,1-b]-1,3-thiazin-4-ones (7a–d), respectively. Compounds (3, 6, and 7) have been cleaved by aromatic amines to give the corresponding 2-(4′,5′-diaryl-2′,3′-dihydroimidazol-2′-yl)thioacetanilide (8a–f), 2-(2′,3′-dihydro-4′,5′-diaryl imidazol-2′-yl)thiopropionamide (9a–c), and 3-(2′,3′-dihydro-4′,5′-diaryl-imidazol-2′-yl)thiopropionamide (10a–d) respectively. All the prepared compounds show considerable antimicrobial activity against bacteria, yeast, and fungi.  相似文献   

3.
Indan-1-one (1a), 1-tetralone (1b), fluorenone (1c), and anthrone (1d) reacted with mercaptoacetic acid in toluene in the presence of p-toluenesulfonic acid to give spiro[indan-1,2′-[1′,3′]oxathialan]-5′-one (2a), spiro[tetrahydro-naphthalene-1,2′-[1,3′]oxathialan]-5′-one (2b), spiro[fluorene9,2′-[1′,3′]-oxathialan]-5′-one (2c), and spiro[anthracene-9(10H)-2′-[1′,3′]-oxathialan]-5′-one (2d), respectively. Compounds 2a–d reacted with arenes in the presence of aluminum chloride to yield spiro[polycyclic-1′-isothiochroman]-4′-one derivatives 3a–t. The mechanisms of these reactions are discussed. All the synthesized spiroheterocycle derivatives were identified by conventional methods (IR, 1H-NMR spectroscopy) and elemental analyses. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
An efficient synthesis of spiro compounds via two different pathways from the reactions of isatins, 3-phenylisoxazol-5(4H)-one (3-ethylisoxazol-5(4H)-one), and pyrazol-5-amine (6-aminopyrimidine-2,4(1H,3H)-dione) were reported. The catalyst Amberlyst-15 could be easy recycled and reused for many time without any appreciable loss in catalytic activity. The new type spiro compounds were gained through the ring-opening of isatins process. The structures of spiro[indoline-3,4′-isoxazolo[5,4-b]pyrazolo[4,3-e]pyridin]-2-one, spiro[isoxazolo[5,4-b]quino line-4,5′-pyrrolo[2,3-d]pyrimidine]-2′,4′,6′(1′H,3′H,7′H)-trione, and spiro[indoline-3,4′-pyrazolo[3,4-b]pyridine]-2,6′(5′H)-dione were successfully confirmed by 1H NMR, 13C NMR, HRMS, and X-ray crystal diffraction analysis.  相似文献   

5.
The reaction of 3-NHR-isoquinolin-1(2H)-ones (R = Ar) with aromatic aldehydes in the presence of Me3SiCl or in acetic acid leads to the formation of derivatives of dibenzo[b,f][1, 8]naphthyridin-5(6H)- one and benzo[f]isoquino[3,4-b][1, 8]naphthyridine-5,9(6H,7H)-dione. The reaction for R = Het in the presence of Me3SiCl gives derivatives of 5H-pyrido[1',2':1,2]pyrimido[4,5-c]isoquinolin-5-one, benzo[f]isoquinoline[3,4-b][1,8]naphthyridine-5,9[6H,7H]-dione, and derivatives of new heterocyclic systems, 5H-pyrazino[1',2':1,2]pyrimido[4,5-c]isoquinolin-5-one, 5H-[1,3]thiazolo[3',2':1,2]pyrimido- [4,5-c]isoquinolin-5-one, 5-H-benzo[f]pyrazolo[3,4-b][1,8]naphthyridin-5-one, and isoquino[3,4-b]- [1,5]naphthyridin-5(6H)-one. The effect of the structure of substituent R and nature of the substituent in the benzaldehydes on the structure of the reaction products was studied.  相似文献   

6.
An efficient procedure for the synthesis of spiro[furan-3,3′-indolin]-2-ones and dispiro[cycloalkane-1,2′-furan-3′,3″-indolin]-2″-ones has been achieved in high yields and stereoselectivity by photoinduced electron transfer-catalyzed [3+2] reactions of substituted spiro[indoline-3,2′-oxiran]-2-ones with olefins. The reactions proceed by ring opening of spiro[indoline-3,2′-oxiran]-2-ones via Cβ–O bond cleavage and subsequent cycloaddition with olefins by using 2,4,6-triphenylpyrylium tetarfluoroborate (TPT) as a sensitizer.  相似文献   

7.
6-Allylsulfanyl-1-arylpyrazolo[3,4-d]pyrimidin-4(5H)-ones react with iodine and sulfuric acid to give angular pyrazolothiazolopyrimidine derivatives. The reaction of 6-(prop-2-yn-1-ylsulfanyl)-1-(4-tolyl)-pyrazolo[3,4-d]pyrimidin-4(5H)-one with sulfuric acid gives angularly fused pyrazolo[4,3-e][1,3]thiazolo-[3,2-a]pyrimidin-4-one, whereas in the reaction with sodium methoxide linearly fused pyrazolo[3,4-d][1,3]-thiazolo[3,2-a]pyrimidin-4-one was formed. Linearly fused pyrazolo[3′,4′:4,5]pyrimido[2,1-b][1,3]thiazole derivatives were also obtained by reaction of 1-aryl-6-(3-phenylprop-2-en-1-ylsulfanyl)pyrazolo[3,4-d]pyrimidin-4(5H)-ones with sulfuric acid.  相似文献   

8.
Hydrazonyl bromides 2a,b reacted with active methylene compounds (dibenzoylmethane, acetylacetone, ethyl acetoacetate, phenacyl cyanide, acetoacetanilide, ethyl cyanoacetate, cyanoacetamide and malononitrile) to afford the corresponding 1,3,4,5- tetrasubstituted pyrazole derivatives 5-12a,b. Reaction of 12a,b with formamide, formic acid and triethyl orthoformate give the pyrazolo[3,4-d]pyrimidine, pyrazolo[3,4- d]pyrimidin-4(3H)one and 5-ethoxymethylene-aminopyrazole-4-carbo-nitrile derivatives 13-15a,b, respectively. Compounds 15 a,b reacted with benzhydrazide and hydrazine hydrate to afford pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidine and [4-iminopyrazolo- [3,4-d]pyrimidin-5-yl]amine derivatives 16 a,b and 17 a,b. Reactions of compounds 17 a,b with triethyl orthoformate and carbon disulfide give the corresponding pyrazolo[4,3-e]- [1,2,4]triazolo[1,5-c]pyrimidine derivatives 18a,b and 19 a,b, respectively.  相似文献   

9.
The current work aims to design and synthesis a new series of isatin derivatives and greatly enhances their cytotoxic activity. The derivatives 3-((bromophenyl) imino)-1-(morpholino (pyridine) methyl) indolin-2-one, 2-((oxoindoline) amino) benzoic acid, 3-(thiazolo-imino) indolinone, ethyl-2-((oxoindolin-3-ylidene)amino)-benzothiophene-3-carboxylate, 1-(oxoindoline)-benzo[4,5] thieno [2,3-d]pyrimidin-4(1H)-one, ethyl-2-(2-oxoindoline) hydrazine-1-carboxylate, N-(mercapto-oxo-pyrimidine)-2-(oxoindoline) hydrazine-1-carboxamide, N-(oxo-thiazolo[3,2-a] pyrimidine)-2-(oxoindolin-ylidene) hydrazine-carboxamide, 3-((amino-phenyl) amino)-3-hydroxy- indolinone, 3-((amino-phenyl) imino)-indolinone, 2-(2-((oxoindoline) amino) phenyl) isoindolinone, 2-(oxoindoline) hydrazine-carbothioamide, 5′-thioxospiro[indoline-3,3′-[1,2,4]triazolidin]-one, 5′-amino-spiro[indoline-3,2′-[1,3,4]thiadiazol]-2-one and 3-((2-thioxo-imidazo[4,5-b]quinoxaline) imino) indolinone were synthesized from the starting material 1-(morpholino (pyridine) methyl) indoline-2,3-dione and evaluated for their in vitro cytotoxic activity against carcinogenic cells. The new chemical structures were evidenced using spectroscopy (IR, NMR and MS) and elemental analysis. The results show that compounds imidazo[4,5-b]quinoxaline-indolinone, thiazolopyrimidine-oxoindoline, pyrimidine-oxoindoline-hydrazine-carboxamide, spiro[indoline-3,2′-[1,3,4] thiadiazol]-one and spiro[indoline-3,3′-[1,2,4]triazolidin]-one have excellent anti-proliferative activities against different human cancer cell lines such as gastric carcinoma cells (MGC-803), breast adenocarcinoma cells (MCF-7), nasopharyngeal carcinoma cells (CNE2) and oral carcinoma cells (KB).  相似文献   

10.
6‐(2‐Thienyl)‐4‐(trifluoromethyl)‐1H‐pyrazolo[3,4‐b]pyridine‐3‐amine reacted with different active methylene compounds to afford pyridopyrazolopyrimidine derivatives. On the other hand, it reacted with some halo compounds to give the imidazo[1′,2′:1,5]pyrazolo[3,4‐b]pyridine derivatives. Also, it diazotized to give the corresponding diazonium chloride that is coupled with several active methylene compounds to give the corresponding triazine derivatives. Furthermore, compound 3‐amino‐6‐(2(thienyl)‐4‐(trifluoromethyl)thieno[2,3‐b]pyridine‐2‐carbohydrazide reacted with some β‐dicarbonyl compounds and some sulfur‐containing compounds to afford the corresponding pyrazolyl oxadiazolylthieno[2,3‐b]pyridine derivatives.  相似文献   

11.
The reaction of 3-(2-oxocycloalkylidene)indol-2-one 1 with thiourea and urea derivatives has been investigated. Reaction of 1 with thiourea and urea in ethanolic potassium hydroxide media leads to the formation of spiro-2-indolinones 2a-f in 40–50% yield and a novel tetracyclic ring system 4,5-cycloalkyl-1,3-diazepino-[4,5-b]indole-2-thione/one 3a-f in 30–35% yield. 3-(2-Oxocyclopentylidene)indol-2-one afforded 5′,6′-cyclopenta-2′-thioxo/ oxospiro[3H-indole-3,4′(3′H)pyrimidin]-2(1H)-ones 2a,b and 3-(2-oxocyclohexylidene)indol-2-one gave 2′,4′a,5′,6′,7′,8′- hexahydro-2′-thioxo/oxospiro[3H-indole-3,4′ (3′H)-quinazolin]-2(1H)-ones 2c-f . Under exactly similar conditions, reaction of 1 with fluorinated phenylthiourea/cyclohexylthiourea/phenylurea gave exclusively spiro products 2g-1 in 60–75% yield. The products have been characterized by elemental analyses, ir pmr. 19F nmr and mass spectral studies.  相似文献   

12.
The synthesis of potential platelet aggregation inhibitors 4,6,7,8-tetrahydroimidazo[1,2-a]pyrazolo[3,4-d]-pyrimidin-7-ones and 1,4,6,7,8,9-hexahydropyrazolo[3′,4′:4,5]pyrimido[2,1-c] [1,2,4]triazin-7-ones derivatives is described starting from 4,6-dichloropyrazolo[3,4-d]pyrimidines.  相似文献   

13.
Condensation of 1H-indole-3-ethanamines 1 with cyclic β-keto esters 2 under azeotropic conditions followed by acid-catalyzed ring closure of the resulting enamines 3 gave 2′,3′,4′,9′-tetrahydrospiro[piperidine-3,1′,-[1H]pyrido[3,4-b]indole] -4-carboxylic acid alkyl esters 4 . Condensation of 1 with 2-acylcycloalkanones 8 gave two types of enamines, 10 and 11 , respectively. Enamines 10 on treatment with acid gave 1-(2′,3′,4′,9′-tetrahydro-3H-pyrido[3,4-b]indol-1-yl)-1-alkylcyclohexanols 17 . Compounds 17 were further dehydrated to give cycloalkane derivatives 19.  相似文献   

14.
2-Chloropyridine-3,4-diamine reacted with hetarenecarboxylic acids (pyridine-2-, pyridine-3-, and pyridine-4-carboxylic acids and 6-oxo-1,6-dihydropyridazine-3-carboxylic acid) in polyphosphoric acid at 160–170°C to give the corresponding 2-hetarylimidazo[4,5-c]pyridin-4-ones. Nitration of the latter with a mixture of concentrated nitric and sulfuric acids led to the formation of 2-hetaryl-7-nitroimidazo[4,5-c]pyridin-4-ones which were converted into 2-hetaryl-7-methylimidazo[4,5-d]pyridazin-4-ones by the action of hydrazine hydrate at 140–150°C.  相似文献   

15.
Synthesis of new thiopyran fused spirooxindoles (spiro[indoline-3,4′-thiopyran]-2-ones) were achieved by a multicomponent reaction of N-methyl isatin, malononitrile/ethyl cyanoacetate, and β-oxodithioester using N,N′-dimethylaminopyridine as the catalyst.  相似文献   

16.
4‐Bromo‐1‐phenyl‐3,5‐pyrazolidinedione 2 reacted with different nucleophilic reagents to give the corresponding 4‐substituted derivatives 3–8 . The cyclized compounds 9–11 were achieved on refluxing compounds 3 , 4 or 6a in glacial acetic acid or diphenyl ether. 4,4‐Dibromo‐1‐phenyl‐3,5‐pyrazolidinedione 12 reacted with the proper bidentates to give the corresponding spiro 3,5‐pyrazolidinediones 13–15 , respectively. The 4‐aralkylidine derivatives 16a‐c , were subjected to Mannich reaction to give Mannich bases 17a‐c‐22a‐c , respectively. 4‐(p‐Methylphenylaminomethylidine)‐1‐phenyl‐3,5‐pyrazolidinedione 23 or 4‐(p‐methylphenylazo)‐1‐phenyl‐3,5‐pyrazolidinedione 29 were prepared and reacted with active nitriles, cyclic ketones and N,S‐acetals to give pyrano[2,3‐c]pyrazole, pyrazolo[4′,3′:5,6]pyrano[2,3‐c]pyrazole, spiropyrazole‐4,3′‐pyrazole and spiropyrazole‐4,3′‐[1,2,4]triazolane derivatives 24–34 , respectively.  相似文献   

17.
Cu(II)-β-cyclodextrin-catalyzed synthesis of spiro[indoline-3,4′-pyrano[3,2-c]chromene]-3′-carbonitriles through the reaction of isatin derivatives, 4-hydroxycoumarin, and malononitrile in ethanol at room temperature.  相似文献   

18.
7-[1,3-Dithiolan-2-ylidene]-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-b][1,3,4]thiadiazepine-6,8-dione and 7-[5-oxo-1,3-dithiolan-2-ylidene]-3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo[3,4-b][1,3,4]-thiadiazepine-6,8-diones were obtained by treating 3-phenyl-5,6,7,8-tetrahydro[1,2,4]triazolo-[3,4-b][1,3,4]thiadiazepine-6,8-diones with CS2 and chloroacetyl chloride, respectively. Treatment of the above compounds with mercaptoacetic acid gave 1,2-dibromoethane or the corresponding spiro polyfused heterocycles. Some other triazolothiadiazepine derivatives including spiro polyfused compounds were also synthesized. __________ Published in Khimiya Geterotsiklicheskikh Soedinenii, No. 8, 1256–1264, August, 2005.  相似文献   

19.
An auto oxidation-rearrangement product 4 was isolated from a high dilution reaction of ninhydrin with 3,4,5-trimethoxyaniline in water. A general synthesis of this compound and its derivatives 4–6 was devised by oxidation of tetrahydroindeno[1,2-b]indol-10-ones 1–3 with sodium periodate to give isoindolo[2,1-a]-indole-6,11-diones 4–6 in good yield. Compounds 4–6 can be easily transformed into spiro[1H-isobenzofuran-1,2′-2H-indole]-3,3′-diones 8–10 , spiro[2H-indole-2,1′-1H-isoindole]-3,3′-diones 11–13 and isoindole[1,2-a:2′,1′-b]pyrimidine-5,15-diones 15, 16 in high yields. Analogous reactions were performed on 3-amino-5a, 10a-dihydroxybenzo[b]indeno[2,1-d]furan-10-one ( 17 ) to give a dibenzoxocintrione 18 , spiro-[benzofuran-2,1′-isobenzofuran]-3,3′-dione 19 and an isoindol-1-one 20 .  相似文献   

20.
Treatment of N-phenyl-substituted benzenecarbo-hydrazonoyl chlorides 1a - d with malononitrile in sodium ethoxide solution gave 5-amino-4-cyanopyrazole derivatives 2 - 5 . Compounds 2 - 5 were converted to formidate derivatives 6 - 9 upon treatment with TEOF in acetic anhydride. The reaction of the latter products 6 - 9 with hydrazine hydrate gave imino-amino derivatives 10 - 13 , which was converted to hydrazino derivatives 14 - 17 by refluxing with hydrazine hydrate. Hydrazino as well as imino-amino derivatives undergo condensation, cyclization, and cycloaddition reactions to give pyrazolo[3,4-d]pyrimidine 18 - 21 , pyrazolo[4,3-e][1,2,4]triazolo-[3,4-c]pyrimidine 22 - 27 , and pyrazolo[3′,4′:4,5]pyrimido[1,6-b][1,2,4]triazine 42 - 44 derivatives. Antimicrobial studies are performed using two Gram-positive bacteria and two Gram-negative bacteria. Data indicated that compounds 5 , 28D , 29B , and 31D are exploring elevated antibacterial effects against all strains tested. Compound 28D is the most promising antibacterial agent against the delicate bacterial strain Bacillus subtilis and Pseudomonas aeruginosa with high effectiveness (low minimum inhibitory concentration [MIC] value) 40 and 60 μg/mL, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号