首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
2.
The magnetic poly(ethylene glycol dimethacrylate-n-vinylimidazole) (Fe3O4@poly (EGDMA@VIM)) microspheres were prepared by suspension polymerization method using magnetite Fe3O4 nano-powder and the porosity, morphology, chemical composition and structure of the magnetic polymer microspheres were characterized. The specific surface area and swelling ratio of the Fe3O4@poly(EGDMA@VIM) microspheres were found to be 278.6?m2·g1 and 48%, respectively. The Fe3O4@poly(EGDMA@VIM) microspheres were used as an adsorbent for phenol removal. The effects of the parameters such as adsorbent dosage, temperature, pH and initial concentration of phenol solutions on the adsorption were investigated. The experimental adsorption equilibrium data obtained were fitted with Langmuir, Freundlich and Dubinin-Radushkevich isotherms and the pseudo-first-order, pseudo-second-order and intra–particle diffusion kinetic models. The adsorption equilibrium data agreed well with the Freundlich isotherm and the pseudo-second-order kinetic model. The maximum capacity of the Fe3O4@poly(EGDMA@VIM) microspheres was calculated to be 33.83?mg·g1 at 298?K and natural pH from Langmuir isotherm. The Fe3O4@poly(EGDMA@VIM) microspheres were found to be reusable for removal of phenol after desorption for several times. The result indicated that the Fe3O4@poly(EGDMA@VIM) microspheres are potential candidate for removal of phenol in wastewaters.  相似文献   

3.
Solid conducting biodegradable composite membranes have shown to enhance nerve regeneration. However, few efforts have been directed toward porous conducting biodegradable composite membranes for the same purpose. In this study, we have fabricated some porous conducting poly(dl-lactide) composite membranes which can be used for the biodegradable nerve conduits. The porous poly(dl-lactide) membranes were first prepared through a phase separation method, and then they were incorporated with polypyrrole to produce porous conducting composite membranes by polymerizing pyrrole monomer in gas phase using FeCl3 as oxidant. The preparation conditions were optimized to obtain membranes with controlled pore size and porosity. The direct current conductivity of composite membrane was investigated using standard four-point technique. The effects of polymerization time and the concentration of oxidant on the conductivity of the composite membrane were examined. Under optimized polymerization conditions, some composite membranes showed a conductivity close to 10−3 S cm−1 with a lower polypyrrole loading between 2 and 3 wt.%. A consecutive degradation in Ringer's solution at 37 °C indicated that the conductivity of composite membrane did not exhibit significant changes until 9 weeks although a noticeable weight loss of the composite membrane could be seen since the end of the second week.  相似文献   

4.
Hierarchical aluminas with pore sizes ranging from a few nanometers to micrometers were obtained using an one-pot sol?Cgel synthesis. The aluminas were synthesized under acid conditions from aluminum isopropoxide in presence of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer template and decahydronaphthalene as emulsifier agent. High-resolution transmission electron microscopy, small-angle X-ray scattering, nitrogen physisorption isotherms and mercury intrusion porosimetry provided evidences of porous structure at different hierarchical levels. The produced aluminas possess hierarchical structure composed of different family of pores that coexist in form of cylinders, pyramids and stacking of platelets. The morphology observed by electron microscopy suggests that the cylindrical pores result from the stacking platelets and that the cylinders and pyramidal pores form the walls of macropores of circular section. These aluminas with hierarchical porous architecture present large surface areas (ca. 435?m2 g?1) and pore volumes (ca. 2.1?cm3 g?1), tunable pore-size distributions and good thermal stability.  相似文献   

5.
Porous poly(vinylidene fluoride-hexafluoropropylene) (PVdF-HFP) membranes were prepared by solvent–nonsolvent evaporation technique. Morphology and porosity of the membranes were varied with different nonsolvents and had an effect on electrochemical properties. The porous membranes were functionalized with different liquid electrolyte solutions such as p-toluene sulfonic acid/phosphoric acid/sulfuric acid. Maximum electrolyte uptake and minimal electrolyte leakage were tailored by the optimized porosity of the membranes. Thermal behavior obtained in this study ensures the complete evaporation of nonsolvents and ensures its thermal stability. The pTSA-activated PVdF-HFP/THF membrane exhibited high ionic conductivity of about 27.27 mS/cm and a lower methanol permeability in the range of 9.7 × 10−8 cm2/s. High compatibility between pTSA solution and porous PVdF-HFP polymer electrolyte membrane enhances its electro chemical behavior than that of conventional liquid electrolytes.  相似文献   

6.
A lotus root-like porous nanocomposite polymer electrolyte (NCPE) based on poly(vinylidene difluoride-co-hexafluoropropylene) [P(VDF-HFP)] copolymer and TiO2 nanoparticles was easily prepared by a non-solvent induced phase separation (NIPS) process. The formation mechanism of the lotus root-like porous structure is explained by a qualitative ternary phase diagram. The resulting NCPE had a high ionic conductivity up to 1.21 × 10−3 S cm−1 at room temperature, and exhibited a high electrochemical stability potential of 5.52 V (vs. Li/Li+), lithium ion transference number of 0.65 and 22.89 kJ mol−1 for the apparent activation energy for transportation of ions. It is of great potential application in polymer lithium ion batteries.  相似文献   

7.
Porous biodegradable poly(urethanes) for reconstructing menisci have been prepared using two different combinations of techniques: freeze-drying/salt-leaching and in-situ polymerization/salt-leaching. Using these methods, homogenous porous materials with a controllable and reproducible morphology can be prepared. The materials were made of three different poly(urethanes): a methylenediphenyldiisocyanate-based polyurethane, a lysine diisocyanate-based poly(urethane), and a poly(-caprolactone)-based poly(urethane). The compressive stress-strain behavior of the Estane foams was determined. Foams made by the freeze-drying/salt-leaching technique implanted in dogs showed healing and good ingrowth of fibrocartilaginous tissue.  相似文献   

8.
A seeded polymerization method based on a new functional monomer, 3-chloro-2-hydroxypropyl methacrylate (HPMA-Cl), was proposed for the synthesis of a new type of monodisperse porous, hydrophilic microspheres with reactive character. By applying the method, poly(3-chloro-2-hydroxypropyl methacrylate-co-ethylene dimethacrylate) (poly(HPMA-Cl-co-EDMA)) microspheres in the range of 4–7 μm, with specific surface areas between 2 and 146 m2/g, were obtained. The microspheres are hydrophilic in nature due to the hydroxyl groups and are easily derivatizable due to the reactive chloropropyl moiety. Ligands in the form of small molecules carrying hydrophobic alkyl or hydrophilic ion exchanger groups were covalently attached onto the microspheres via simple and one-pot reactions via their chloropropyl functionality. Using the same functionality, click chemistry and surface-initiated atom transfer radical polymerization were also applied for the generation of triazole ring and zwitterionic molecular brushes on the microspheres, respectively. Poly(HPMA-Cl-co-EDMA) microspheres seem to be a promising hydrophilic reactive material particularly for the synthesis of ion exchanger resins and chromatographic stationary phases.  相似文献   

9.
A new “grafting to” strategy was proposed for the preparation of polymer based ion exchange supports carrying polymeric ligands in the form of weak or strong ion exchangers. Monodisperse porous poly(glycidyl methacrylate-co-ethylene dimethacrylate), poly(GMA-co-EDM) particles 5.9 μm in size were synthesized by “modified seeded polymerization”. Poly(2,3-dihydroxypropyl methacrylate-co-ethylene dimethacrylate), poly(DHPM-co-EDM) particles were then obtained by the acidic hydrolysis of poly(GMA-co-EDM) particles. The hydroxyl functionalized beads were treated with 3-(trimethoxysilyl)propyl methacrylate to have covalently linked methacrylate groups on the particle surface. The selected monomers carrying weak or strong ionizable groups (2-acrylamido-2-methyl-1-propane sulfonic acid, AMPS; 2-dimethylaminoethylmethacrylate, DMAEM and N-[3-(dimethylamino)propyl] methacrylamide, DMAPM) were subsequently grafted onto the particles via immobilized methacrylate groups. The final polymer based materials with polyionic ligands were tried as chromatographic packing in the separation of proteins by ion exchange chromatography. The proteins were successfully separated both in the anion and cation exchange mode with higher column yields with respect to the previously proposed materials. The plate heights obtained for poly(AMPS) and poly(DMAEM) grafted poly(DHPM-co-EDM) particles by using proteins as the analytes were 80 and 200 μm, respectively. Additionally, the plate height exhibited no significant increase with the increasing linear flow rate in the range of 1–20 cm/min. The most important property of the proposed strategy is to be applicable for the synthesis of any type of ion exchanger both in the strong and weak form.  相似文献   

10.
Highly porous functional scaffolds were obtained from linear and cross-linked multifunctional poly(ε-caprolactone) and poly(L-lactide). The polymers were synthesized by ring-opening polymerization of ε-caprolactone and L-lactide using poly(but-2-ene-1,4-diyl malonate) (PBM) as macroinitiator and stannous 2-ethylhexanoate. The presence of a double bond in each repeating unit of PBM enabled cross-linking of both scaffolds and films. Soft and flexible scaffolds were created from cross-linked PBM. The mechanical properties of scaffolds and films were evaluated under cyclic conditions, with a focus on the compositions and molecular weights. It was obvious that PBM in the polymers and its cross-linking ability resulted in tunable material characteristics, including an increased ability to recover after repeated loading.  相似文献   

11.
Novel acetylenes carrying urea groups, 1-(4-ethynylphenyl)-3-(4-nitrophenyl) urea (1), 1-(4-propargyl)-3-(4-nitrophenyl) urea (2), were synthesized and polymerized with rhodium catalyst. Polymers [poly(1) and poly(2)] with moderate molecular weights were obtained in good yields. The anion sensing ability of poly(1) and poly(2) was estimated using the tetra-n-butylammonium (TBA) salts of a series of anions in DMF. Upon the addition of F-, the color of the DMF solution of poly(1) and poly(2) immediately turned to a different color, while the color of solution changed slightly upon addition of Cl-, HSO4-, Br-, and NO3-, indicating the F- sensing ability of poly(1) and poly(2). The 1H-NMR titrations of poly(1) revealed that the colorimetric response of poly(1) was triggered by the urea/F- interaction through the hydrogen bonding and/or deprotonation process. The absorption spectra titration and Hill plot analysis were carried out to measure the F- binding ability, and the Hill coefficient in the poly(1)/F- complexation was found to be 5.8. This result clearly indicated that this binding mode between poly(1) and F- was based on a positive homotropic allosterism.  相似文献   

12.
Methacrylic acid (MAA), methyl methacrylate (MMA), methacrylamide, and oligomers of MAA and MMA were selected as a model of active radical species in living template polymerization using stereocomplex formation. The adsorption behaviors of the aforementioned model compounds were examined toward porous isotactic‐(it‐) poly(methyl methacrylate) (PMMA) ultrathin films on a quartz crystal microbalance, which was prepared by the extracting of syndiotactic‐(st‐) poly(methacrylic acid) (PMAA) from it‐PMMA/st‐PMAA stereocomplexes. The apparent predominant adsorption of oligomers to monomers was observed in both PMAA and PMMA oligomers, suggesting that the mechanism of template polymerization follows the pick up mechanism. Although vinyl monomers were not incorporated into the porous it‐PMMA ultrathin film, both PMMA and PMAA oligomers were adsorbed at the initial stages. However, adsorbed amounts were limited to about 5 and 15% at 0.1 mol L?1, respectively, which are much smaller values than corresponding st‐polymers. The results imply that radical coupling reaction is prevented during template polymerization to support the resulting living polymerization. ATR‐IR spectral patterns of oligomer complexes and it‐PMMA slightly changed in both cases, suggesting complex formation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5879–5886, 2008  相似文献   

13.
A kind of porous carbon spheres (PCS) was prepared by the carbonization of poly(vinylidene chloride) synthesized by suspension polymerization. Structure analyses revealed the existence of bumps and holes on the surface of PCS. The PCS, with the pore size between 0.8–1.2 nm, could be used as the support of zinc acetate because of the regular shape, high specific surface area, and good mechanical strength. Vinyl acetate was produced from acetylene and acetic acid using the PCS-supported zinc acetate (PCS-Zn) under mild conditions. In a single-pass operation performed at 220°C, the conversions of acetic acid and acetylene reached 22.6 and 5.3% respectively while the activity of vinyl acetate formation was above 1000 g mol−1 h−1.  相似文献   

14.
N-isopropylacrylamide (NIPAAm) monomer was grafted on and in poly(vinylidene fluoride) (PVDF) micro-pore membrane by γ-irradiation. The influence of irradiation and reaction conditions on the grafting yield was investigated in detail. The chemical structure of NIPAAm-grafted PVDF (NIPAAm-g-PVDF) membrane was characterized by Fourier transform infrared spectra and X-ray photoelectron spectra measurements. The morphology of the sample surface as well as the cross-section before and after grafting was characterized by scanning electron microscope. The temperature sensitive properties of the membrane were monitored by measuring the conductance as well as the water flux through the sample thickness. The results show that the membrane exhibits clearly temperature-sensitive permeability to water as expected, i.e. the permeability of water changes dramatically as the temperature goes over the lower critical solution temperature of NIPAAm.  相似文献   

15.
Herein we report an easy and efficient approach to prepare lightweight porous polyimide (PI)/reduced graphene oxide (RGO) composite films. First, porous poly (amic acid) (PAA)/graphene oxide (GO) composite films were prepared via non‐solvent induced phase separation (NIPS) process. Afterwards PAA was converted into PI through thermal imidization and simultaneously GO dispersed in PAA matrix was in situ thermally reduced to RGO. The GO undergoing the same thermal treatment process as thermal imidization was characterized with thermogravimetric analysis, Raman spectra, X‐ray photoelectron spectroscopy and X‐ray diffraction to demonstrate that GO was in situ reduced during thermal imidization process. The resultant porous PI/RGO composite film (500‐µm thickness), which was prepared from pristine PAA/GO composite with 8 wt% GO, exhibited effective electrical conductivity of 0.015 S m?1 and excellent specific shielding efficiency value of 693 dB cm2 g?1. In addition, the thermal stability of the porous PI/RGO composite films was also dramatically enhanced. Compared with that of porous PI film, the 5% weight loss temperature of the composite film mentioned above was improved from 525°C to 538°C. Moreover, tensile test showed that the composite film mentioned above possessed a tensile strength of 6.97 MPa and Young's modulus of 545 MPa, respectively. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
《先进技术聚合物》2018,29(1):151-159
Super porous gum Arabic (GA) cryogels were synthesized by crosslinking of natural GA with divinyl sulfone at cryogenic conditions, −20°C for potential biomedical applications. Humic acid (HA) nanoparticles were also prepared by using degradable and biocompatible crosslinkers such as trimethylolpropane triglycidyl ether, poly(ethylene glycol) diglycidyl ether, and trisodium trimetaphosphate in a single step and then entrapped within GA cryogel network as GA/HA particle cryogel. Furthermore, GA/HA cryogel was used as a template for Ag, Cu, and Fe nanoparticle preparation, and their antimicrobial properties were tested against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis strains. The minimum inhibition concentration values of Ag and Cu nanoparticle‐loaded GA/HA cryogel composites were determined as 10 mg mL−1. Furthermore, the blood compatibility tests such as hemolysis and blood clotting indexes were determined for GA cryogels and found to be more compatible with 0.08 ± 0.01% hemolysis and 89.4 ± 6.1 blood clotting values, whereas the hemolysis of the Ag, Cu, and Fe nanoparticle‐loaded GA/HA Ag, Cu, and Fe metal nanoparticle cryogel composites decreased in the order of Fe > Cu > Ag nanoparticles.  相似文献   

17.
Three hydrophilic immobilized metal affinity chromatographic packings for HPLC have been synthesized by chemical modification of 3.0 µm monodisperse non‐porous poly(glycidyl methacrylate‐co‐ethylenedimethacrylate) (PGMA/EDMA) beads. The retention behavior of proteins on the metal ion chelated columns loaded with copper(II), nickel(II) and zin(II) ion was studied. The effect of pH on the protein retention was investigated on both the naked and metal ion chelated columns in the range from 4.0 to 9.0. Four proteins were quickly separated in 3.0 min with linear gradient elution at a flow rate of 3.0 mL/min by using the synthesized Ni2+‐IDA (iminodiacetic acid) packings. The separation time was shorter than other immobilized metal affinity chromatography reported in the literature. Purification of lysozyme from egg white and trypsin on the commercially available trypsin was performed on the naked‐IDA and Cu2+‐IDA columns, respectively. The purities of the purified trypsin and lysozyme were more than 92% and 95%, respectively.  相似文献   

18.
Well‐defined ABCD 4‐Miktoarm star‐shaped quarterpolymers of [poly(styrene)‐poly(tert‐butyl acrylate)‐poly(ethylene oxide)‐poly(isoprene)] [star(PS‐PtBA‐PEO‐PI)] were successfully synthesized by the combination of the “click” chemistry and multiple polymerization mechanism. First, the poly(styryl)lithium (PS?Li+) and the poly(isoprene)lithium (PI?Li+) were capped by ethoxyethyl glycidyl ether (EEGE) to form the PS and PI with both an active ω‐hydroxyl group and an ω′‐ethoxyethyl‐protected hydroxyl group, respectively. After these two hydroxyl groups were selectively modified to propargyl and 2‐bromoisobutyryl group for PS, the resulted PS was used as macroinitiator for ATRP of tBA monomer and the diblock copolymer PS‐b‐PtBA with a propargyl group at the junction point was achieved. Then, using the functionalized PI as macroinitiator for ROP of EO monomer and bromoethane as blocking agent, the diblock copolymer PI‐b‐PEO with a protected hydroxyl group at the conjunction point was synthesized. After the hydrolysis, the recovered hydroxyl group of PI‐b‐PEO was modified to bromoacetyl and then azide group successively. Finally, the “click” chemistry between them was proceeded smoothly. The obtained star‐shaped quarterpolymers and intermediates were characterized by 1H NMR, FT‐IR, and SEC in detail. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2154–2166, 2008  相似文献   

19.
Novel alkoxy anthracene (ODA)‐based polymeric semiconductors were designed for polymer solar cell applications. Alkoxyanthracene, which contains many π electrons and electron donating group, was easily synthesized. The copolymers, poly(alkoxy anthracene‐alt‐thiophene benzothiadiazole thiophene) poly(ODA‐TBT) and poly(alkoxy anthracene‐alt‐benzothiadiazole) poly(ODA‐BT), have been obtained by Suzuki coupling polymerization. Both polymers have ODA unit as a donor and benzothiadiazole as an acceptor. ODA‐TBT has thiophene linkages between ODA and benzothiadiazole. The optical, thermal, and electrochemical properties have been investigated by UV–visible absorption, thermal gravimetric analysis, differential scanning calorimetry, and CV. Organic thin‐film transistor using polymers showed that the hole mobility of poly(ODA‐alt‐TBT) was around 3.6 × 10?3 cm2/Vs with on/off ratio of 9.91 × 105 while that of poly(ODA‐alt‐BT) was around 1.21 × 10?2 cm2/Vs with on/off ratio of 2.64 × 106. Organic photovoltaic performance based on polymers were evaluated with a configuration of ITO/PEDOT:PSS/active layer/LiF/Al. Poly(ODA‐TBT) exhibits a short circuit current (Jsc) of 3.9 mA/cm2 and power conversion efficiency (PCE) of 1.4%, and poly(ODA‐BT) exhibits the Jsc of 6.4 mA/cm2 and PCE of 2.2%. The better device performance of poly(ODA‐BT) is attributed to its charge transfer ability and enhanced mobility and crystallinity although poly(ODA‐BT) does not have extended π‐conjugation due to twisted structure compared with poly(ODA‐TBT). © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1306–1314  相似文献   

20.
Chromium(VI) is determined through its direct electrochemical reduction in the bulk of a porous glassy carbon electrode. An electrode filled with the acidified sample and Cr(VI) is reduced by means of a constant current whereas the potential of the electrode is monitored. The limits of detection and quantification were found to be 1.9 and 6.0 μg · L−1, resp. The linear range, repeatability and reproducibility were found to be 5–500 μg · L−1, 1.2, and 1.8%, resp. The influence of Fe(III), Ca(II), Mg(II), sulphates, nitrates, humic acids and surfactants was investigated. Total chromium was measured after chemical oxidation of Cr(III) to chromate by permanganate. The method was applied to analyses of water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号