首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ring‐opening metathesis polymerization (ROMP) has become one of the most important living polymerizations. Cyclopropenes (CPEs) remain underexplored for ROMP. Described here is that the simple swap of 1‐methyl to 1‐phenyl on 1‐(benzoyloxymethyl)CPEs elicited strikingly different modes of reactivity, switching from living polymerization to either selective single‐addition or living alternating ROMP. The distinct reactivity stems from differences in steric repulsions at the Ru alkylidene after CPE ring opening. Possible olefin or oxygen chelation from ring‐opened CPE substituents was also observed to significantly affect the rate of propagation. These results demonstrate the versatility of CPEs as a new class of monomers for ROMP, provide mechanistic insights for designing new monomers with rare single‐addition reactivity, and generate a new functionalizable alternating copolymer scaffold with controlled molecular weight and low dispersity.  相似文献   

2.
Entropy‐driven ROMP (ED‐ROMP) involves polymerization of olefin‐containing macrocyclic monomers under entropically favorable conditions. Macrocycles can be prepared from a variety of interesting molecules which, when polymerized, impart unique functionality to the resulting polymer backbone such as degradable linkages, biological moieties, crystallizable groups, or supramolecular hosts. In addition, the sequence of atoms in the cyclic monomer is preserved within the polymer repeating units, allowing for facile preparation of sequence‐defined polymers. In this review article, we consider how the mechanism of ROMP applies to ED polymerizations, how olefinic macrocycles are synthesized, and how polymerization conditions can be tuned to maximize conversion. Recent works in the past 10 years are highlighted, with emphasis on methods which can be employed to achieve fast polymerization kinetics and/or selective head‐to‐tail regiochemistry, thus improving polymerization control. ED‐ROMP, with its unique capability to produce polymers with well‐defined polymer backbone microstructure, represents an essential complement to other, well‐established, metathesis methodologies such as ROMP. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1621–1634  相似文献   

3.
New norbornene-type monomers containing covalently bound C60 fullerene have been obtained. In the presence of the 1st generation Grubbs catalyst [(PCy3)2Cl2RuCHPh] (Cy is cyclohexyl), these monomers smoothly undergo homopolymerization and copolymerization with parent fullerene-free monomers. The homopolymers are insoluble in common organic solvents, while the copolymers obtained at different molar ratios to their fullerene-free analogues are very soluble in organic solvents and can be suitable for the preparation of thin films.  相似文献   

4.
Polymers containing terminal hydrogen-bonding recognition motifs based on diaminotriazine and diaminopyridine groups in their side chains for the self-assembly of appropriate receptors have been prepared by ring-opening metathesis polymerization (ROMP) of norbornenes. A new synthetic method for the preparation of norbornene monomers based on pure alkyl spacers is introduced. These monomers show unprecedented high reactivity using ROMP. To suppress self-association of diaminotriazine-based polymers, polymerizations were run in presence of N-butylthymine. The butylthymine acts as a protecting group via self-assembly onto the hydrogen-bonding sites of the polymeric scaffold, thereby solubilizing the polymer. Diaminopyridine monomers do not require the presence of a protecting group due to their low propensity to dimerize. In addition, they exhibit a high affinity for hydrogen-bonded receptors on both monomeric and polymeric level. These polymers present our first building blocks towards the design and synthesis of a "universal polymer scaffold".  相似文献   

5.
Abstract

Several transition metal alkylidene complexes are first discussed as catalysts for the ring-opening metathesis reaction. A new ruthenium catalyst with a slightly enhanced reaction rate is introduced. The stereochemistry and kinetics of the catalysts are investigated with different norbornene derivatives. Then it is shown that MgCl2 alone is a good heterogeneous catalyst for the ring-opening polymerization (ROMP) of norbornene compounds. This is the first catalyst which does not need activation by a transition metal compound or another organometallic cocatalyst. Applications of the ROMP reaction for the synthesis of polymer specialities covering conjugated liquid crystals and optically active polymers are shown. Poly(cyclopentadienylene vinylene) and sidechain liquid crystal polymers are discussed in more detail. Finally, the synthesis of liquid crystalline elastomers by incorporation of bifunctional monomers during the ROMP reaction is described. It is shown that this kind of polymer can be used for the fabrication of optically anisotropic materials.  相似文献   

6.
Addition polymerization and copolymerization of bis(Me3Si)-substituted norbornene-type monomers such as 5,5-bis(trimethylsilyl)norbornene-2, 2,3-bis(trimethylsilyl)norbornadiene-2,5 and 3,4-bis(trimethylsilyl)tricyclo[4.2.1.02,5]nonene-7, in the presence of Ni(II) naphtenate/MAO catalyst were studied. Disubstituted norbornene and norbornadiene were found to be practically inactive in homopolymerization. On the other hand, their copolymerization with norbornene proceeded with moderate yields of copolymers containing predominantly norbornene units. Under studied reaction conditions 2,3-bis(trimethylsilyl)norbornadiene-2,5 was transformed into the only exo-trans-exo-dimer as a result of the [2+2]-cyclodimerization reaction. Moving Me3Si-substituents one carbon atom away from norbornene double bond made 3,4-bis(trimethylsilyl)tricyclo[4.2.1.02,5]nonene-7 active in homopolymerization and allowed to obtain addition homo-polymer with two Me3Si-substituents in each elementary unit. The reaction mechanism and steric effect of Me3Si-substituents are also discussed.  相似文献   

7.
Alkene metathesis is a superb methodology. We report the progress using alkene metathesis in the synthesis of polymeric organic semiconductors. Three classes of polymers have been synthesized using acyclic diene metathesis (ADMET) or ring opening metathesis polymerization (ROMP), viz., poly(acetylene)s (PA), poly(arylene‐vinylene)s (PAV), and organometallic polymers. For PAs, ROMP of cyclooctatetraenes is best, whereas for PAV, both ADMET and indirect and direct ROMP are viable. Metathesis performs flawlessly with the correct monomers, as molybdenum and particularly the robust Ru carbenes demonstrate. When performing ROMP, one is often rewarded with structurally uniform polymers that can display very low polydispersities. Overall, metathesis is a powerful tool for the preparation of semiconducting polymers.  相似文献   

8.
This article describes the synthesis of piperazine‐containing homopolymer systems via ring‐opening metathesis polymerization (ROMP). These systems were subsequently used as electron donors in the formation of charge‐transfer (CT) complexes. Using exo‐N‐(6‐bromohexyl)‐7‐oxabicyclo[2.2.1]hept‐5‐ene‐2,3‐dicarboxamide as a starting material, monomers were synthesized to act as electron donors. The amine group at the “open” end of the piperazine was either left open or alkylated with various alkyl groups. The monomers' ability to act as electron donors and their polymerization rates were studied. After initial photometric titration studies using 2,3‐dichloro‐5,6‐dicyanobenzoquinone (DDQ) as an electron acceptor proved that these monomers would act as electron donors, they were subsequently polymerized into homopolymers via ROMP. The experimental results showed that a methanol:chloroform mixed solvent system enhanced the rate of polymerization over a single solvent (chloroform) system. Studies also showed that the alkylated piperazine‐containing monomer had a faster rate of polymerization than the secondary piperazine monomer. These monomers were used to make piperazine‐containing homopolymers via ROMP and the resulting polymers, like the monomers, also functioned as electron donors. Potential functions of these polymers include electronics, solar cells, optical systems, and biological applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5034–5043, 2009  相似文献   

9.
A new class of SCLCPs was prepared by polymerizing mesogenic norbornene derivatives using Mo(CHCMe2R)(N-2,6-C6H3-i-Pr2)(O-t-Bu)2 (R = CH3 or Ph). Monomers based on norbornene ring systems were chosen because the rings are highly strained and therefore yield irreversible polymerizations. The Mo-alkylidene initiators were chosen because they initiate norbornene derivatives relatively fast and quantitatively, and provide stable chain ends which have low reactivity to both the internal double bonds of the polymer backbone and the functional groups present in the monomers. The apparent absence of termination and transfer reactions in ROMP results in polymerizations which appear to be living, and the fast initiation and irreversible chain growth leads to polymers with narrow molecular weight distributions in which the degree of polymerization is controlled by the ratio of monomer to initiator used. The resulting well-defined polymers were used to determine the most basic structure-property relationships of this new class of SCLCPs. The thermotropic behavior of both terminally attached and laterally attached SCLCPs based on polynorbornene backbones becomes independent of molecular weight at approximately 25 repeat units. In addition, polydispersity was found to have no effect on the breadth of nematic phase transitions in the terminally attached polymers, with the transition temperature determined simply by the number average degree of polymerization.  相似文献   

10.
Lee KS  Choi TL 《Organic letters》2011,13(15):3908-3911
A hydrogen-bond-assisted model is proposed for ring-opening metathesis polymerization (ROMP) of a secondary amide of 1-cyclobutene, resulting in the fastest reaction rate in a nonpolar solvent, toluene. This new model was supported by the investigation on how the solvent effect affected the NMR spectra, ROMP kinetic studies, and the copolymerization of monomers 1 and 2.  相似文献   

11.
The preparation of new ring opening metathesis polymerization (ROMP) monomers using a 1,3‐dipolar cycloaddition between aryl azides and norbornadiene is described. Various norbornenetriazolines, obtained through a solvent‐and catalyst‐free reaction, can subsequently be incorporated into polymer backbones through ROMP reactions. Furthermore, thermal decomposition of the triazoline moiety can allow for further polymer functionalization. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2357–2362  相似文献   

12.
Recent results for synthesis of end-functionalized polymers (EFP) by using olefin metathesis polymerization have been introduced including basic characteristics in ring-opening metathesis polymerization (ROMP) of cyclic olefins and acyclic diene metathesis (ADMET) polymerization for synthesis of conjugated polymers. Several approaches were demonstrated for synthesis of EFP by living ROMP using molybdenum (exclusive coupling with aldehyde) and ruthenium catalysts (sacrificial ROMP, chain transfer). Cis specific (Z selective) ROMPs were achieved by molybdenum, ruthenium, and vanadium catalysts by the ligand modification. The catalytic synthesis of EFP with high cis selectivity has been achieved by combined ROMP with chain transfer by V(CHSiMe3)(N-2,6-Cl2C6H3)[OC(CF3)3](PMe3)2. The ADMET polymerization using molybdenum and ruthenium catalysts afforded defect-free, high molecular weight poly(arylene vinylene)s containing all trans olefinic double bonds. The methods for precise synthesis of EFPs, exhibiting unique optical properties combined with the end groups, were developed. The catalytic one-pot syntheses for EFPs have also been developed.  相似文献   

13.
Ring-opening metathesis polymerization (ROMP)-derived poly(oxanorbornene imide)s bearing bay-linked mono - alkoxy -M1 and 1,7-di-alkoxy M2 functionalized perylene diimides (PDIs) were synthesized using Grubb's third ( G3 ) and Hoveyda-Grubbs second generation ( HG2 ) ruthenium-alkylidene metathesis initiators. The mono-alkoxy-derived PDI-based non-ladderphane polymer poly M1 displayed 67% to 77% of the trans olefin content in the polymer chain depending on the initiator used for the polymerization. When using the symmetrical 1,7-di-alkoxy-derived PDI-based polymer poly M2 having the ladderphane type-structure, this displayed a significant amount of cis and trans olefin contents in the polymer chains, irrespective of the type of initiators used for the polymerization. ROMP of both monomers M1 and M2 proceeded in a well-controlled manner with a linear dependence of molecular weight on the monomer/initiator ratio using G3 as initiator. Optical properties of the ladderphane-based poly M2 and non-ladderphane-based poly M1 were characterized in both solution and the film state. X-ray diffraction (XRD) analysis for all the polymers showed significant π-stacking in the thin film state with ordered molecular packing and closer values of d-spacing for both poly M1 and poly M2 . Film morphology examined by AFM elucidated homogenous smooth polymer surface for both polymers in general, but with some irregularities observed for poly M1 . In addition, CV analysis revealed both polymers could be good candidates as electron-accepting materials, with excellent film-forming ability, and thermal stability.  相似文献   

14.
本文设计合成了卟啉的降冰片烯单体,采用Grubbs催化剂与长链烷基的降冰片烯单体开环易位聚合,直接得到了卟啉降冰片烯聚合物,通过紫外-可见吸收光谱、荧光光谱、电化学等手段研究了卟啉降冰片烯聚合物的性质,与小分子单体相比,所得卟啉高分子共聚物相当好地保持了卟啉应有的光物理、电化学等特性.  相似文献   

15.
Mild thermolysis of Lewis base stabilized phosphinoborane monomers R1R2P? BH2?NMe3 (R1,R2=H, Ph, or tBu/H) at room temperature to 100 °C provides a convenient new route to oligo‐ and polyphosphinoboranes [R1R2P‐BH2]n. The polymerization appears to proceed via the addition/head‐to‐tail polymerization of short‐lived free phosphinoborane monomers, R1R2P‐BH2. This method offers access to high molar mass materials, as exemplified by poly(tert‐butylphosphinoborane), that are currently inaccessible using other routes (e.g. catalytic dehydrocoupling).  相似文献   

16.
The ring-opening metathesis polymerization (ROMP) kinetics of three different norbornene-based monomers, ethylidene norbornene (ENB), endo-dicyclopentadiene (DCPD) and exo-DCPD, in the presence of Grubbs’ catalyst are examined using differential scanning calorimetry and rheokinetic viscosity measurements. Several different parameters were considered, such as, the monomer healing agents (including different monomer mixtures), the catalyst concentration, and test temperature to determine how these parameters influence cure development. The polymerization kinetics, quantified by exothermic peak locations in the case of differential scanning calorimetry and rheokinetic transition times in the case of viscosity measurements, are shown to be highly dependent on monomer type and catalyst concentration. The ENB monomer had the fastest kinetics even at the lowest catalyst concentration compared to the other diene monomers and mixtures.  相似文献   

17.
The block and random copolymerization of a series of amino acid and amino ester functionalized norbornenes by ring‐opening metathesis polymerization (ROMP) induced by the well‐defined molybdenum [Mo(?N‐2,6‐iPr? C6H3)(?CHCMe2)Ph)(OCMe3)2] or ruthenium [Ru(PCy)2Cl2(?CHPh)] based initiators is described. The monomers are derived from the amino acids glycine, alanine, and isoleucine or the methyl esters of these amino acids and either endo‐ or exo‐norborn‐5‐ene‐2,3‐dicarboxylic anhydride. Enantiomerically pure monomers afforded optically active polymers, and the mechanism and kinetics of the copolymerizations are investigated. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7985–7995, 2008  相似文献   

18.
Fluorogenic nanoparticles (NPs) able to sense different physiological environments and respond with disaggregation and fluorescence switching OFF/ON are powerful tools in nanomedicine as they can combine diagnostics with therapeutic action. pH-responsive NPs are particularly interesting as they can differentiate cancer tissues from healthy ones, they can drive selective intracellular drug release and they can act as pH biosensors. Controlled polymerization techniques are the basis of such materials as they provide solid routes towards the synthesis of pH-responsive block copolymers that are able to assemble/disassemble following protonation/deprotonation. Ring opening metathesis polymerization (ROMP), in particular, has been recently exploited for the development of experimental nanomedicines owing to the efficient direct polymerization of both natural and synthetic functionalities. Here, we capitalize on these features and provide synthetic routes for the design of pH-responsive fluorogenic micelles via the assembly of ROMP block-copolymers. While detailed photophysical characterization validates the pH response, a proof of concept experiment in a model cancer cell line confirmed the activity of the biocompatible micelles in relevant biological environments, therefore pointing out the potential of this approach in the development of novel nano-theranostic agents.

pH-responsive micelles disassembly, upon acidification during lysosomal uptake, leads to fluorescence switch ON. These nanoparticles are promising candidates for the design of novel stimuli-responsive drug delivery systems.  相似文献   

19.
Various bisallylic ruthenium(IV) complexes were synthesized and tested as catalysts for the ring opening metathesis polymerization (ROMP) of norbornene. In presence of cocatalysts such as silanes or certain diazoalkanes a significant increase of the catalytic activity could be observed. With these highly efficient systems the ROMP of diolefinic norbornene derivatives (dicyclopentadiene, 5-ethylidene-2-norbornene, norbornadiene) and monomers containing functional groups was achieved (e.g. alcohols, acids, esters, amides, imides, ketones, aldehydes, …).  相似文献   

20.
Three of the four possible structures for polymers formed from an achiral monomer through a single ROMP polymerization step have been prepared for a small collection of monomers. Trans,syndiotactic structures have been prepared through chain end control, cis,isotactic polymers have been prepared through enantiomorphic site control, and cis,syndiotactic polymers have been prepared through stereogenic metal control. Stereogenic metal control at the metal center as a means of forming syndiotactic polymers is virtually unknown. Synthesis of ROMP polymers with a regular structure that contain alternating enantiomers from a racemic mixture of monomers is a natural consequence of stereogenic metal control. Ruthenium catalysts do not display ROMP specificities analogous to those described here, perhaps since alkylidene isomers have not been observed for Ru catalysts and the barrier to rotation of the carbene in a generic NHC dichloride Ru catalyst has been calculated to be relatively low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号