首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new process of graft copolymerization of poly(vinyl chloride) (PVC) and polyethylene (PE) with other monomers was developed. The grafted chlorinated poly(vinyl chloride) (CPVC) and chlorinated polyethylene (CPE) were synthesized by in situ chlorinating graft copolymerization (ISCGC) and were characterized. Convincing evidence for grafting and the structure of graft copolymers was obtained using FT‐IR, 1H‐NMR, gel permeation chromatography (GPC), and the vulcanized curves. Their mechanical properties were also measured. The results show that the products have different molecular structure from those prepared by other conventional graft processes. Their graft chains are short, being highly branched and chlorinated. The graft copolymers have no crosslinking structure. The unique molecular structure will make the materials equipped with special properties. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

2.
Graft polymers from poly(vinyl chloride) (PVC) and chlorinated rubber (CIR) with side chains of poly(methyl methacrylate) (PMMA), poly(methyl acrylate) (PMA), or poly(ethyl methacrylate) (PEMA) were synthesized. For this purpose, a vinyl monomer was polymerized in the presence of small quantities of PVC or CIR with benzoyl peroxide as catalyst. The graft polymers were separated from both homopolymers by precipitation with methanol from methyl ethyl ketone solutions of the reaction products and the grafting efficiency was calculated. The graft polymers were characterized by infrared spectra, elemental analysis, NMR, and osmometric or light-scattering determinations. From the results it is concluded that the PVC or CIR molecules contain side chains of PMMA, PMA, or PEMA. The graft polymers showed higher molecular weights, and the values of second virial coefficient for these polymers were much different from those of the starting polymers.  相似文献   

3.
A graft polymer was prepared by means of the coupling reaction of chlorinated ethylene–propylene terpolymer with living polystyrene, obtained with a sodium–naphthalene complex as initiator, under various conditions; the grafting efficiency and the percentage of grafting are discussed. Poly(chloroprene), chlorinated butyl rubber, poly(vinyl chloride), poly(epichlorohydrin), and epichlorohydrin–ethylene oxide copolymer were also used as chlorine-containing polymers. The grafting efficiencies were found to be in the following order: chlorinated butyl rubber > poly(epichlorohydrin) > epichlorohydrin-ethylene oxide copolymer > chlorinated ethylene-propylene terpolymer > poly(chloroprene) > poly(vinyl chloride). A graft polymer was obtained from the reaction between chlorinated ethylene–propylene terpolymer and living poly(isoprene), with butyllithium in benzene. The undesirable metal–halogen interchange reaction was considerable.  相似文献   

4.
The preparation of poly(butadiene-g-α-methylstyrene) copolymers was investigated with three different alkylaluminum coinitiators. The alkylaluminum compounds in conjunction with polybutadiene which contained a low concentration of labile chlorine atoms initiated the polymerization of α-methylstyrene to produce graft copolymers. Trimethylaluminum gave higher grafting efficiencies than diethylaluminum chloride at comparable monomer conversions. Triethylaluminum produced only very low monomer conversions (<5%), even at long reaction times, and for this reason was not studied extensively. The number of grafts per polybutadiene backbone was determined for a number of copolymers and found to increase slightly as the allylic chlorine concentration in the polybutadiene backbone was increased. In all cases, however, only a low percentage of the available labile chlorine sites along the polybutadiene backbone resulted in grafted α-methylstyrene side chains. The addition of small quantities of water to the polymerization solvent greatly enhanced the grafting rate and ultimate monomer conversion during the synthesis of these poly(butadiene-g-α-methylstyrene) copolymers. The mechanistic role of water during these grafting reactions is unknown at the present time.  相似文献   

5.
Low molecular weight polymers and copolymers of butadiene were grafted with styrene. The graft products were then crosslinked by using dicumyl peroxide as initiator. The optimum peroxide concentration was established (5 phr). Infrared analysis showed that the reactivity of 1,2-vinyl and that of 1,4-trans double bonds in styrene-grafted polybutadiene is similar. Crosslinking of the graft product seems to involve a radical-chain polymerization of double bonds in the polymer. The reaction rate is proportional to the square root of peroxide concentration and to the concentration of polymer double bonds. Activation energy, reaction heat, reaction order, and crosslinking efficiency were also determined from DSC measurements. No relation was found between the activation energy of crosslinking and the molecular weight of backbone polymer or density of grafting. Crosslinking efficiency was to 25–50 crosslinks per molecule of decomposed peroxide. The crosslinking efficiency for grafted butadiene–styrene copolymers is somewhat lower than that for grafted polybutadienes. From thermogravimetric measurements it was found that the crosslinked grafted polymers show lower resistance to thermal degradation than ungrafted polymers.  相似文献   

6.
Abstract

In this paper the light-induced grafting reaction of dimethyl maleate, diethyl maleate, dibutyl maleate and diethyl fumarate, onto aryloxysubstituted phosphazene polymers, to form polyphosphazene copolymers containing grafted succinate groups, is investigated by means of IR spectroscopy and the equilibrium swelling technique of polyphosphazene films. The importance of several different experimental factors that can influence the final succinate grafting yields is discussed, i.e. the type and concentration of the polyphosphazenes and of the unsaturated products, reaction time, the absence or presence of molecular oxygen or of the 1-vinyl-2-pyrrolidone monomer, and the concentration of the benzoin ethyl ether photoinitiator.

Furthermore, it is shown that the overall efficiency of the lightinduced grafting process is lower than that previously measured for the reaction initiated thermally using peroxide species, and that the photochemical grafting reaction always occurs with no degradation of the phosphazene macromolecules.

The possibility of exploiting these new phosphazene substrates in blend technology has been considered.  相似文献   

7.
A novel radical grafting copolymerization process has been designed for water-soluble polymers which avoids the problems of conducting grafting reactions in highly viscous polymerization media. A variety of water-soluble graft copolymers having starch or dextran as the backbone chain with grafted side chains of polyacrylamide (—AM—), poly (acrylic acid ) (—AA—), poly (acrylamide-co-acrylic acid) (—AM—NH_4AA—) or poly ( acrylamide-co-2-acryiamido-2-methyl-l-propanesulphinic acid) (—AM—AMPS—) have been synthesized in gel droplets using aceric sulphate redox initiator, and their properties compared. The reaction conditions were optimized taking into account reaction kinetic data and the observed properties of the products produced under different reaction conditions. The effects of the ratios of [backbone]/[graft monomer], [ AM]/[ AA]/[AMPS] , [Ce~(4+)]/[ S_2O_8=] and pH value on the reaction rate , conversion, grafting degree, grafted chain length and the product molecular weight have been investigated.  相似文献   

8.
Poly(vinyl chloride)-poly(ethylene oxide) block copolymers have been synthesized in solution and emulsion. The polymers were made by first synthesizing macroazonitriles through the reaction of 4,4′-azobis-4-cyanovleryl chloride with hydroxy-terminated poly(ethylene oxide) of varying molecular weights. These macroazonitriles had molecular weights in the range of 3000–88,000 and degrees of polymerization from 5 to 24. Thermal decomposition of the azolinkages in the presence of vinyl chloride monomer yielded block copolymers containing form 2 to 20 wt % poly(ethylene oxide). The structures of the block copolymers were characterized by spectrometric, elemental and molecular weight analyses. The possibility of some graft polymerization occurring via free-radical extraction of a methylene hydrogen from the poly(ethylene oxide) was considered. Polymerization of vinyl chloride with an azonitrile initiator in the presence of a poly(ethylene oxide) yielded predominately homopolymer with some grafted poly(vinyl chloride).  相似文献   

9.
Anionic graft copolymers were synthesized through grafting of poly(ethylene glycol) monomethyl ether (MPEG) onto terpolymers containing succicinic anhydride groups. The backbone polymers were prepared through radical terpolymerization of maleic anhydride, styrene, and one of the following monomers: methyl methacrylate, ethylhexyl methacrylate, and diethyl fumarate. MPEG of different molecular weights were grafted onto the backbone through reactions with the cyclic anhydride groups. In this reaction one carboxylic acid group is formed together with each ester bond. The molecular weights of MPEG were found to influence the rate of the grafting reaction and the final degree of conversion. The graft copolymers were characterized by IR, GPC, and 1H-NMR. Thermal properties were examined by DSC. Graft copolymers containing 50% w/w of MPEG 2000 grafts were found to be almost completely amorphous, presumably because of crosslinking, and hydrogen bonding between carboxylic acid groups in the backbone and the ether oxygens in MPEG grafts. © 1995 John Wiley & Sons, Inc.  相似文献   

10.
In order to develop polymers useful as mobility control agents in enhanced oil recovery processes, water-soluble acrylamide grafted polysaccharide copolymers have been synthesized in water at 25° C using a ceric ammonium nitrate/nitric acid system. The effects of varying concentrations of ceric ion, monomer, and substrate on conversion, graft length, and molecular structure of the reaction products have been examined. The crude reaction products were purified by fractional precipitation and then were analyzed for nitrogen content using a micro-Kjeldahl method. The chemical structures of the graft copolymers were studied by selective hydrolysis of the carbohydrate backbones. Intrinsic viscosity and grafting length data were used to predict solution behavior of the graft copolymers prepared under controlled conditions. Aqueous size exclusion and viscosity studies showed direct correlations between hydrodynamic volume and length of the polyacrylamide side-chain grafts.  相似文献   

11.
Graft copolymerization of methyl methacrylate (MMA) on chlorine containing polymers [e.g. trichloroacetates of poly(vinyl alcohol), microcrystalline cellulose or starch and chlorinated atactic polypropylene] in the presence of vanadium(III) chloride (VCl3) was carried out in dimethylformamide at 70°. The grafting n-butyl methacrylate or ethyl acrylate on poly(vinyl trichloroacetate) displayed high efficiency; in the first system, however, crosslinked polymer fractions were formed. The number-average molecular weight of grafted branches was determined. Chromium(II) acetate and titanium(III) chloride are less efficient initiators for polymerization of methacrylates in the presence of trichloroacetates.  相似文献   

12.
A novel synthetic strategy for the synthesis of graft copolymers is reported. Block copolymers containing segments with stable nitroxyl radicals side groups were first prepared by anionic polymerization, which were then used as a precursor for the subsequent nitroxide-mediated radical polymerization (NMRP) of styrene. This way, block–graft copolymers with polystyrene side chains grafted from one of the blocks were successfully synthesized in a controlled manner. In addition, block–graft copolymers with grafted polystyrene chains and a poly(tert-butyl methacrylate) block were subjected to hydrolysis to yield the corresponding amphiphilic polymers. The structures and the molecular weight characteristics of the polymers were characterized by spectral and chromatographic analyses. The surface morphology of thus obtained polymers was also investigated by microscopic techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 62–69  相似文献   

13.
Grafting of methyl methacrylate onto poly(6-methacryloyl-D -galactose) was very rapid, and the increase in weight reached about 1500% after 2–3 min. The maximum number of branches of the graft copolymers obtained was about 50. In the closest position two adjacent grafted branches were separated from each other by about 45–50 units of 6-methacryloyl-D -galactose on the average. Susceptibility of the various polymers containing sugar residues to grafting was compared, and the importance of the hemiacetal group in the grafting was revealed. Solubility of the backbone polymer in water was also important for rapid grafting by the ceric ion method.  相似文献   

14.
Post-irradiation grafting of sodium styrene sulfonate (SSS) in the presence of acrylic acid (AA) has been investigated on polyethylene (PE) pre-exposed to gamma radiation at room temperature in the air. Special attention was paid to the effect of low molecular weight salt additives on the kinetics of graft copolymerization of SSS and AA. The presence of SSS links in the grafted PE copolymers was detected by the methods of UV and FTIR spectroscopy. Based on the FITR spectroscopy and element analysis data, a mechanism was proposed for graft copolymerization of SSS and AA onto PE. The mechanical properties of the graft copolymers were studied. It was established that PE copolymers grafted with sulfonic acid and carboxyl groups have higher strength characteristics (16.3 MPa) compared to the samples containing only carboxyl groups (11 MPa).  相似文献   

15.
The grafting polymerization of styrene initiated by the alkyl chloride groups of poly(CTFE‐alt‐VE) and poly[(CTFE‐alt‐VE)‐co‐(HFP‐alt‐VE] copolymers (where CTFE, HFP, and VE stand for chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and vinyl ether (VE), respectively) followed by the chemical modification of the polystyrene grafts are presented. First, the fluorinated alternating copolymers were produced by radical copolymerization of CTFE (with HFP) and VE. Second, atom transfer radical polymerization enabled the grafting polymerization of styrene in the presence of the poly(CTFE‐alt‐VE)‐macroinitiator using the alkyl chloride group of CTFE as the initiation site. Kinetics of the styrene polymerization indicated that such a grafting had a certain controlled character. For the first time, grafting of polystyrene onto alternating fluorinated copolymers has been achieved. Differential scanning calorimetry thermograms of these graft copolymers exhibited two glass transition temperatures assigned to both amorphous domains of the polymeric fluorobackbone (ranging from ?20 to +56 °C) and the polystyrene grafts (ca. 95 °C). The thermostability of these copolymers increased on grafting. Thermal degradation temperatures at 5% weight loss were ranging from 193 to 305 °C when the polystyrene content varied from 81 to 27%. Third, chloromethylation of the polystyrene grafts followed by the cationization of the chloromethyl dangling groups led to original ammonium‐containing graft copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

16.
Water-soluble comb-shaped polymers were prepared through grafting of poly(ethylene glycol) monomethyl ethers (MPEG) onto acrylic and methacrylic ester copolymers by transesterification reactions. The grafting was alkali-catalyzed, and performed in refluxing toluene solution or in melt at 155°C. The grafting efficiency was found to be on the order of 1 graft/10 monomer units. Epoxy groups in glycidyl methacrylate copolymers were also utilized for grafting. The crude graft copolymers were purified through chromatography and characterized by NMR and IR spectroscopy. Polymers prepared from MPEG 2000 were crystalline with melting points 10–15°C lower than the MPEG used. All polymers were shown to be surface active with CMC on the order of 1.5 g/L, and surface tensions of 38–45 dyn/cm. When used as emulsifiers the graft copolymers containing bulky lipophilic ester groups (2-ethylhexyl t-butyl) gave oil-in-water (o/w) and water-in-oil (w/o) emulsions from xylene/water with higher stability than those containing straight chain ester groups (methyl nbutyl n-docecyl). The most stable emulsions were obtained by dissolving the polymers in the organic phase.  相似文献   

17.
通过活性正离子聚合与原子转移自由基聚合(ATRP)转换合成了β-蒎烯与甲基丙烯酸甲酯(MMA)、丙烯酸丁酯(BA)、苯乙烯(St)的新型接枝共聚物.首先以α-氯代乙苯/TiCl4/Ti(OiPr)4/nBu4NCl体系引发β-蒎烯活性正离子聚合,合成预定分子量大小和窄分子量分布的聚β-蒎烯,然后经N-溴代琥珀酰亚胺(NBS)定量溴化,得到溴化聚β-蒎烯大分子引发剂(Br/β-蒎烯链节摩尔比为0.5).然后将该大分子引发剂与溴化亚铜(CuBr)/2,2′-联吡啶(bpy)复合,引发MMA、BA、St进行ATRP接枝聚合.接枝反应显示一级动力学特征,且产物的分子量及分子量分布可控,表明上述ATRP接枝聚合反应具有可控聚合特征.接枝产物的结构经1H-NMR分析得到进一步证实.  相似文献   

18.
在均相溶液体系下,运用紫外光辐射引发合成了聚砜与丙烯酸的接枝共聚物。用化学滴定、漫反射傅立叶变换红外光谱和热分析等技术对接枝聚合物进行了表征。结果表明:丙烯酸被接枝在聚砜链上;光照时间、单体浓度和光引发剂浓度对接枝率均有较大影响。膜表面接触角的研究表明,接枝共聚物膜的亲水性比改性前有所提高。  相似文献   

19.
The radiation-induced grafting of acrylonitrile, 4-vinylpyridine, and styrene was carried out by both radical and ionic mechanisms. Grafted polymers with equal percentages of graft were obtained by the radical and ionic propagation of the grafted chains. The molecular weight of homopolymers has been determined. The thermomechanical properties of the graft polymers were investigated. The yield temperatures for the graft polymers obtained by ionic propagation of the grafted chains is higher than that of graft polymers obtained by a radical mechanism. This is attributed to the higher molecular weight of the grafted chains obtained by the radiation-induced grafting by the ionic mechanism. The radiation-induced grafting of polyacrylonitrile increases significantly the thermal stability of polyethylene. The differential thermal analysis shows no marked differences in properties of the polymers.  相似文献   

20.
The miscibility of polycarbonates derived from Bisphenol A or 2,5,2′,5′-tetramethyl-Bisphenol A with poly(vinyl chloride), chlorinated poly(vinyl chloride), and vinyl chloride-vinylidene chloride copolymers has been investigated. In miscible blends a shift of the position of the carbonyl absorption in the IR spectra indicates dipolar interactions between the polymers. The miscibility of chlorinated polyethylenes and reduced poly(vinyl chloride)s among each others demonstrates besides the importance of polar groups the influence of their distribution within the polymer chains for the compatibility of the polymers. The investigations on the miscibility have been carried out by differential scanning calorimetry, and by casting films with microscopical observation of the resulting structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号