首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The local chain mobility of a gellan, an electrolyte polysaccharide, in aqueous systems was examined with respect to the effect of the temperature, the concentration of gellan (c(G)), and the concentration of added salt (c(S)). The relaxation time of local motion was estimated for fluorescein isothiocyanate (FITC)-labeled-gellan by the fluorescence depolarization technique, and the chain mobility was discussed. The relaxation time increased with decreasing temperature, in particular when accompanying the coil-helix transition due to the great difference in chain mobility between the coil and the helical conformations. The effect of c(G) was observed for gellan solutions even below the critical concentration of chain entanglement (2 wt.-%) for well-expanded nonelectrolyte polymers with size similar to that of the gellan. This suggests that the actual excluded volume of gellan is larger than that of nonelectrolyte polymers due to the electrostatic repulsion between segments. The relaxation time for 0.2 wt.-% systems of gellan in coil conformation is independent of c(S), whereas a c(S) dependence of the relaxation time is clearly observed for 0.5 wt.-% systems. The degree of expansion of the gellan chain is independent of the shielding effect of cations on the electrostatic repulsion between gellan segments due to the stiffness of gellan chain. On the other hand, the c(G) as well as the c(S) dependence of the chain mobility is clearly observed for gellan in the helical conformation, examined over the concentration range, probably due to the partial aggregation of helices induced by the attractive interaction between gellan segments.  相似文献   

2.
 Gelation kinetics, mechanical spectra, thermal scanning rheology (TSR), and differential scanning calorimetry (DSC) in aqueous solutions of gelling polymers and colloids such as seaweed polysaccharides (agarose, carrageenans), microbial polysaccharides (gellan, curdlan), plant polysaccharides (methylcellulose), globular proteins (casein, glycinin, β-conglycinin), fibrous proteins (gelatin, fibrin), and polyvinyl alcohol, which are related to foods, cosmetics, biomedical and pharmaceutical applications, are described. Some gelation processes at a constant temperature have been treated successfully by an equation of first order kinetics or by other modified equations, and the molecular mechanism of gel formation is discussed briefly. For water-soluble polymers, the criterion of the gel or sol based on the frequency dependence of storage and loss moduli gives valuable informations. TSR and DSC are complementary, and the combination of these methods has been proved to be useful. Received: 17 June 1997 Accepted: 28 August 1997  相似文献   

3.
The interaction between gellan gum (GELL) and konjac glucomannan (KGM) with and without sodium chloride, potassium chloride, calcium chloride and magnesium chloride has been monitored using mechanical spectroscopy and differential scanning calorimetry (DSC). The rheological results indicated that the synergism occurred at sufficient low temperatures where individual helices of GELL molecules were sufficiently aggregated. With progressive addition of monovalent cations, storage shear modulus G' and loss shear modulus G” for mixtures gradually increased, and not only the helix-coil transition temperature of GELL molecules in mixtures but also the sol-gel transition temperature for mixtures shifted to higher temperatures with increasing concentration of salts. Moreover, in the presence of sufficient monovalent cations, mixtures formed an elastic gel with large thermal hysteresis. In the presence of divalent cations, the synergistic interaction was promoted up to a certain concentration, however, with more progressive addition of divalent cations, the main structure formed by aggregates of GELL helices would be smaller, so that mixtures could not form a gel in the presence of excessive divalent cations. DSC results indicated that the intermolecular binding complexes between GELL and KGM molecules would not occur, but KGM markedly influenced the disorder-order transition of GELL molecules. We have suggested that KGM was attached to the surface of large aggregates of GELL helices, and since cations promote GELL self-aggregation by a screening effect, the synergistic interaction between GELL and KGM was promoted with increasing concentration of salts. However, excessive divalent cations formed various aggregates of GELL helices with different thermal stabilities, so that the phase-separation in GELL/KGM mixtures was promoted in the presence of excessive divalent cations.  相似文献   

4.
荧光光谱跟踪结冷胶水溶液的溶液-凝胶转变   总被引:2,自引:0,他引:2  
将异硫氰酸荧光黄(FITC)标记在结冷胶分子链,用荧光光谱跟踪了结冷胶水溶液凝胶化过程中FITC荧光强度和各向异性比的变化.结果表明在结冷胶的凝胶化转变中,FITC的荧光相对强度和各向异性随温度降低而增大,在某一温度荧光相对强度和各向异性比对温度的曲线出现了明显的转折点,这个转折点的温度低于流变温度扫描曲线中G′=G″的温度.利用荧光的方法确定物理交联体系的关于重均聚合度和凝胶分数的相关临界指数γ和β.γ和β不符合Flory-Stockmayer和逾渗模型的预测.  相似文献   

5.
The sol-gel transition in aqueous gellan gum solutions induced upon cooling was investigated by rheology measurements. The gelation temperature was determined from the crossover point of storage and loss moduli, i.e., G′ = G′′ (Tc) and from the Winter’s criterion (Tgel), respectively, which increased with gellan concentration. Tgel was higher than Tc and the difference became larger as the gellan concentration got higher. The relaxation critical exponent n was estimated with the Winter’s method and the self-similarity was observed from the critical gel. The scaling for the zero-shear viscosity η0 before the gel point and the equilibrium modulus Ge after the gel point was established against the relative distance ε from the gel point over the gellan concentration Cg of 1.0-2.5 wt%, giving the critical exponents k and z. The critical exponent n calculated from k and z agrees well with n from the Winter’s criterion. However, no universal n was found for the gelation in aqueous gellan gum solutions, indicating that this gelation should be classified into the cross-linking category for the physical gelation. The critical exponent n decreased with increasing Cg for the gellan gum solution. The fractal dimension df calculated from n with the screened hydrodynamic interaction and the excluded volume effect suggested a denser structure in the critical gel with higher Cg.  相似文献   

6.
Thermal behavior of aqueous hydroxypropylmethylcellulose (HPMC)/surfactant mixtures was studied in the dilute concentration regime using micro-differential scanning calorimetry (DSC). The surfactant used was sodium n-dodecyl sulfate (SDS). The heat capacity of HPMC gel with various concentrations of SDS was much higher than that of the pure HPMC gel. The addition of SDS at different concentrations showed dissimilar influences on the gelation of HPMC; SDS at lower concentrations (≤6 mM) did not affect gelation temperature significantly except for enhancing the heat capacity whilst SDS at higher concentrations (≥6 mM) not only resulted in the gelation of HPMC at higher temperatures but also changed the pattern of the gelation thermograph from a single mode to a bimodal. On the basis of the observed thermal behavior of HPMC/SDS systems, the mechanism behind the sol-gel transition was discussed in terms of the properties of the surfactant and their influences on the extent of polymer/surfactant binding and polymer/polymer hydrophobic association. Gelation kinetics was analysed using the results from the DSC measurements. The kinetic parameters were determined.  相似文献   

7.
When PEG (M.W.~5000 Daltons) is conjugated to poly(l ‐alanine), the polymer aqueous solutions (<10.0 wt.%) undergo sol‐to‐gel (thermal gelation), whereas it is conjugated to poly(l ‐lactic acid), the polymer aqueous solutions (>30.0 wt.%) undergo gel‐to‐sol (gel melting) as the temperature increases. In the search for molecular origins of such a quite different phase behavior, poly(ethylene glycol)‐poly(l ‐alanine) (PEG‐PA; EG113‐A12) and poly(ethylene glycol)‐poly(l ‐lactic acid) (PEG‐PLA; EG113‐LA12) are synthesized and their aqueous solution behavior is investigated. PEG‐PAs with an α‐helical core assemble into micelles with a broad size distribution, and the dehydration of PEG drives the aggregation of the micelles, leading to thermal gelation, whereas increased molecular motion of the PLA core overwhelms the partial dehydration of PEG, thus gel melting of the PEG‐PLA aqueous solutions occurs. The core‐rigidity of micelles must be one of the key factors in determining whether a polymer aqueous solution undergoes sol‐to‐gel or gel‐to‐sol transition, as the temperature increases. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, , 52, 2434–2441  相似文献   

8.
We report the experimentally determined phase diagram for an aqueous solution of isotactic-rich poly(N-isopropylacrylamide) (PNiPAM) composed of the sol-gel transition curve and the cloud-point curve. The meso diad content of isotactic-rich PNiPAM is 64%, and it is soluble in water at low temperatures, but undergoes a sol-to-gel transition with increasing temperature in the investigated concentration range of 1.8 wt. %-6.0 wt. %. With a further increase in temperature, the system becomes turbid. The gel formation and clouding behavior are thermally reversible. This is the first observation of thermoreversible gelation under the cloud-point temperature for an aqueous solution of PNiPAM. On the basis of the determined phase diagram, we carried out light scattering experiments to characterize the sol-gel transition behavior as a function of temperature.  相似文献   

9.
The problem of gelation of concentrated protein solutions, which poses challenges for both downstream protein processing and liquid formulations of pharmaceutical proteins, is addressed herein by employing previously discovered viscosity-lowering bulky salts. Procainamide-HCl and the salt of camphor-10-sulfonic acid with l-arginine (CSA-Arg) greatly retard gelation upon heating and subsequent cooling of the model proteins gelatin and casein in water: Whereas in the absence of additives the proteins form aqueous gels within several hours at room temperature, procainamide-HCl for both proteins and also CSA-Arg for casein prevent gel formation for months under the same conditions. The inhibition of gelation by CSA-Arg stems exclusively from the CSA moiety: CSA-Na was as effective as CSA-Arg, while Arg-HCl was marginally or not effective. The tested bulky salts did not inhibit (and indeed accelerated) temperature-induced gel formation in aqueous solutions of all examined carbohydrates―starch, agarose, alginate, gellan gum, and carrageenan.  相似文献   

10.
Thermal gelation of cellulose in a NaOH/thiourea aqueous solution   总被引:4,自引:0,他引:4  
Utilizing a novel solvent of cellulose, 6 wt % NaOH/5 wt % thiourea aqueous solution, for the first time, we prepared the thermally induced cellulose gel. We investigated the thermal gelation of cellulose solutions with rheometry and the structure of the gel with 13C NMR, wide-angle X-ray diffraction, environmental scanning electron microscopy, and atomic force microscopy. The cellulose solutions revealed an increase in both the storage modulus (G') and the loss modulus (G") with an increase in the temperature during gelation. The temperature at the turning point, where G' overrides G" because of the onset of gelation, decreased from 38.6 to 20.1 degrees C with an increase of cellulose concentration from 4 to 6 wt %. Given enough time, G' of all solutions can exceed G" at a certain temperature slightly lower than the gelation temperature, indicating that the occurrence of the gelation is also a function of time. Each of the assigned peaks of NMR of the cellulose gel is similar to that of the cellulose solution, suggesting that the gelation resulted from a physical cross-linking. The gels were composed of relatively stable network units with an average diameter of about 47 nm. At either a higher temperature (at 60 degrees C for 30 s) or a longer gelation time (at 30 degrees C for 157 s), the gel in the 5 wt % cellulose solution could form. A schematic gelation process was proposed to illustrate the sol-gel transition: the random self-association of the cellulose chains having the exposed hydroxyl in the aqueous solution promotes the physical cross-linking networks.  相似文献   

11.
Small-amplitude dynamic measurements of aqueous starch polysaccharide solutions are performed by a Bohlin controlled-stress rheometer with air bearing. Three classes of starch polysaccharides–native starches, fractions of starches and hydrolysed starches–are compared in their molecular composition and rheological properties during and after the gelation process. Viscoelastic properties of solutions and gels are recorded in dependence on temperature and time, yielding storage and loss moduli during and after sol-gel transition. Hot concentrated aqueous solutions are cooled down from 90 °C to 5 °C at a rate of 1 °C/min. Measurements are carried out at 0,1 Hz and 5% strain amplitude deformation. The typical course of the moduli of gelling starch polysaccharide solutions shows a liquid-like behavior (G” > G') in the upper temperature level between 60 and 90 °C, a jumpwise increase with ensuing intersection of G' and G” below 60 °C and a solid-like behavior (G' > G”) at lower temperatures with a slightly in time growing storage modulus. Storage and loss moduli depend on molecular composition and concentration of the substance. The process of starch polysaccharide aggregation is discussed with regard to theories of physical gelation by Ross-Murphy and Winter.  相似文献   

12.
The effects of chloride salts on the dissolution of cellobiose in aqueous solution were investigated using calorimetry and 1H NMR. The dissolution of cellobiose in salt solutions is a typical entropy-driven process. The activity of ZnCl2 and LiCl hydrated ions is enhanced as the hydration number decreases with increasing temperature. Zn2+ and Li+ hydrates can interact with the oxygen atoms at the O5 and O6 positions of cellobiose and associate with the Cl? anions, leading to the breakage of cellobiose hydrogen bonds. We found that the solubility of cellobiose in aqueous solutions is on the order of ZnCl2 > LiCl > NaCl > H2O > KCl > NH4Cl, which is consistent with the Hofmeister series. For the first time, we recognized the specific ionic effects of the Hofmeister series on the dissolution of cellobiose in salt aqueous solutions. This finding is helpful for understanding the dissolving mechanism of cellulose in aqueous solvents with salts and providing fundamental knowledge for finding and designing new cellulose solvents.  相似文献   

13.
Thermoreversible gelation and microphase formation of aqueous solutions of a methylated polyrotaxane (MePR) were investigated by means of differential scanning microcalorimetry, rheometry, and X-ray diffractometry (XRD). The aqueous solutions of MePR show a lower critical solution temperature (LCST) and form an elastic gel with increasing temperature. The sol-gel transition of the MePR solutions was induced by formation and deformation of aggregates of methylated alpha-cyclodextrins (alpha-CDs) of polyrotaxane due to hydrophobic dehydration and hydration, respectively. The XRD investigation revealed localization and highly ordered arrangement of methylated alpha-CDs along the PEG chain in the gel. The arrangement of CDs was also reflected by the changes in elasticity and long relaxation behavior of the solution around the sol-gel transition. The quasiequilibrium shear modulus of MePR solutions showed the critical phenomena against temperature. The scaling exponents measured at two different concentrations were almost equal to the values predicted by a gel percolation theory. Therefore, the heat-induced gelation of aqueous MePR solutions is well explained by a model in which clusters assembled with methylated alpha-CDs are gradually connected to the network as the temperature increases.  相似文献   

14.
海藻酸(alginate)是一种天然多糖,是直链键合的β-D-甘露糖醛酸(M)和α-L-古洛糖醛酸(G)的无规嵌段共聚物[1].在海藻酸水溶液中加入钙、铜、锌、铅等二价正离子,能够形成凝胶;其中钙-海藻酸凝胶在细胞输送、组织工程等领域受到人们的关注[2,3].影响海藻酸凝胶化的因素包括海藻酸的分子量和分子量分布、M/G值和序列分布、溶液浓度、正离子种类与浓度等[4,5].  相似文献   

15.
采用流变学方法研究了具有高PEO质量分数(80%)的两亲性三嵌段共聚物Pluronic F68(PEO80-PPO30-PEO80)和F108(PEO133-PPO50-PEO133)的水溶液在升温过程中的溶胶-凝胶转变过程, 发现对于特定浓度的嵌段共聚物水溶液, 在溶胶-凝胶转变过程中会出现一个“软凝胶”区域, 通过对F68进行区域的频率扫描实验, 推测了相应的内部结构.  相似文献   

16.
The effects of various salts on the sol-gel transition of aqueous methylcellulose (MC) solutions have been studied systematically by means of a micro differential scanning calorimeter. It was found that the heating process was endothermic while the cooling process was exothermic for both MC solutions with and without salts. The addition of salts did not change the patterns of gelation and degelation of MC. However, the salts could shift the sol-gel transition and the gel-sol transition to lower or higher temperatures from a pure MC solution, depending on the salt type. These opposite effects were termed the salt-assisted and salt-suppressed sol-gel transitions. Either the salt-assisted transition or the salt-suppressed sol-gel transition was a function of salt concentration. In addition, each salt was found to have its own concentration limit for producing a stable aqueous solution of MC at a given concentration of MC, which was related to the anionic charge density of the salt. Cations were proved to have weaker effects than anions. The "salt-out strength", defined as the salt effect per mole of anion, was obtained for each anion studied. The thermodynamic mechanisms involved in the salt-assisted and salt-suppressed sol-gel transitions are discussed.  相似文献   

17.
We are reporting an unusual closed-loop phase behavior of poly(ethylene glycol)-beta-poly(ethyl-2-cyanoacrylate) (PEG-PEC) aqueous solutions. As the temperature increased from 0 to 60 degrees C, the aqueous polymer solution (12 wt %) underwent sol-to-gel and gel-to-syneresis transitions. However, the polymer aqueous solution persisted as a sol phase below 4.0 wt % as well as above 16 wt % in the same temperature range, thus forming a closed-loop gel domain in the phase diagram. The closed-loop gel domain is suggested to be a result of the balance between the aggregation and the stabilization of micelles in specific temperature and concentration ranges.  相似文献   

18.
The effects of a cationic surfactant, cetyltrimethylammonium bromide (CTAB), on the gelation of methylcellulose (MC) in aqueous solutions have been investigated by micro differential scanning calorimetry (micro DSC) and rheology. Methylcellulose had a weight average molecular weight of 310,000 and a degree of substitution of 1.8. The concentration of MC was kept at 0.5 wt % (0.016 mM) and 1 wt % (0.032 mM), and the concentration of CTAB in the MC solutions was varied from 0 to 0.6 wt % (16.5 mM). Upon heating, a single endothermic peak, which is due to the hydrophobic association and gelation of MC, shifts to lower temperatures with increasing CTAB for CTAB < or = CMC (0.93 mM or 0.034 wt %), and then it shifts to higher temperatures lineally with CTAB for CTAB > CMC. At the same time, the endothermic enthalpy decreases with increasing CTAB concentration. Even though CTAB shows a significant "salt-in" effect on the gelation of MC, it does not affect the pattern of the sol-gel transition as well as the gel strength of MC. At the highest concentration of CTAB, 0.60 wt %, MC is still able to form a gel. At a given ratio of CTAB/MC, the effect of CTAB on MC becomes stronger when the MC concentration is lower. The results for the MC-CTAB system are compared with an ionic surfactant, SDS and the significant differences in affecting the gelation of MC between two surfactants are recognized.  相似文献   

19.
Biodegradable and thermosensitive poly(organophosphazenes) with various substituents were synthesized and their hydrolytic degradation properties were investigated in vitro and in vivo. The aqueous solutions of all polymers showed a sol-gel phase transition behavior depending on temperature changes. The side groups of polymers significantly affected the polymer degradation and accelerated hydrolysis of polymers in the order of carboxylic acid > depsipeptide > without carboxylic acid and depsipeptide. The increased gel strength led to the decreased hydrolysis rate. The polymer hydrogels with 750 Da of α-amino-ω-methoxy poly(ethylene glycol) were rapidly decreased by dissolution. The polymer degradation was also influenced by pH and temperature. The in vivo behaviors of mass decrease of the polymer hydrogels were similar with the in vitro results. These results suggest that the biodegradable and thermosensitive poly(organophosphazenes) hold great potentials as an injectable and biodegradable hydrogel for biomedical applications with controllable degradation rate.  相似文献   

20.
鲁路  刘新星  童真 《高分子学报》2010,(12):1351-1358
 介绍了海藻酸盐水溶液的凝胶化及其临界行为和松弛临界指数n.提出了将凝胶化按高分子的分子链长短分为生长型和交联型两类,前者为无规交联,符合逾渗连接的条件;后者大分子链间交联,不符合无规逾渗连接的条件.介绍了微囊化细胞载体、预成型支架和可注射支架,能够为软骨细胞提供良好的三维生长环境;通过LbL、二价离子交联等自组装技术,海藻酸能够实现对多种类型药物的包埋和控释.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号