首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paramagnetic aryl-alkynyl complexes [Mo(C≡CAr)(dppe)(η-C(7)H(7))](+) (dppe = Ph(2)PCH(2)CH(2)PPh(2); Ar = C(6)H(5), [1](+); C(6)D(5), [2](+); C(6)H(4)-4-F, [3](+); C(6)H(4)-4-Me, [5](+)) and [Mo(C≡CBu(t))(dppe)(η-C(7)H(7))](+) [4](+), have been investigated in a combined EPR and ENDOR study. Direct experimental evidence for the delocalisation of unpaired spin density over the framework of an aryl-alkynyl ligand has been obtained. The X-band solution EPR spectrum of the 4-fluoro derivative, [3](+), exhibits resolved hyperfine coupling to the remote para position of the aryl group [a(iso)((19)F) = 4.5 MHz, (1.6 G)] in addition to couplings attributable to (95/97)Mo, (31)P and (1)H of the C(7)H(7) ring. A full analysis of the (1)H ENDOR spectra is restricted by the low g anisotropy of the system which prevents the use of orientation selection. However, inter-comparison of the (1)H cw-ENDOR frozen solution spectra of [1](+), [2](+), [4](+) and [5](+), combined with spectral simulation informed by calculated values derived from DFT investigations, has facilitated estimation of the experimental a(iso)((1)H) hyperfine couplings of [1](+) including the ortho, ±3.7 MHz (±1.3 G) and para, ±3.9 MHz (±1.4 G) positions of the C(6)H(5) substituent of the aryl-alkynyl ligand.  相似文献   

2.
In the presence of HBF4 · OEt2, [MoH4(Ph2PCH2CH2PPh2)2] exhibits a remarkably rapid and diverse range of reactions with a variety of small molecules. The crystal structure of the product obtained in the presence of phenylacetylene, trans-[MoF(η2-PhCCH)(Ph2PCH2CH2PPh2)2]BF4 is reported.  相似文献   

3.
Reaction of RCCH (R  Ph, CO2Meor CO2Et) with trans-[M(N2)2(dppe)2] (M  Mo or W; dppe  Ph2PCH2CH2PPh2) or [Mo(dppm)3] (dppm  Ph2PCH2PPh2) gives the alkyne complexes [M(RCCH)2(diphos)2] (diphos  dppe, M  Mo, R = Ph; dihpos  dppm, M  Mo, R  Ph or CO2Me) and the alkynyl complexes trans-[M(cCR)2(dppe)2], [MH2(CCR)2 (dppe)2] (M  Mo or W. R  Ph, CO2Me or CO2Et) and cis-[WH(CCCO2Me)(dppe)2]: the X-ray structure of trans-[Mo(CCPh)2(dppe)2] is reported.  相似文献   

4.
The electrophilic methylene complex (η5-C5H5)(Ph2PCH2CH2PPh2)RuCH2+ (1) has been characterized by 13C and variable-temperature 1H NMR spectroscopy and exhibits a vertical orientation of the methylene group with a barrier for rotation about the rutheniumcarbon double bond of 10.9 kcal/mol.  相似文献   

5.
6.
Reaction of ButCCH with trans-[Mo(N2)2(dppe)2] (dppe = Ph2PCH2CH2PPh2) gives [MoH3(CCBut)(dppe)2], whose X-ray structure is reported.  相似文献   

7.
《Polyhedron》1986,5(3):921-923
The treatment of (η-C5H5)OMo(μ-O)2MoO(η-C5H5) with excess phenylisocyanate at reflux in tetrahydrofuran yields the arylimido-substituted complex (η-C5H5)(NPh)Mo(η-NPh)2Mo(NPh)(η-C5H5), which has been characterized by elemental analysis, and mass, IR and 1H NMR spectra.  相似文献   

8.
Complete self-recognition of chirality is observed in the Michael addition of the enolate derived from R,S-[η5-C5H5Fe(CO)(PPh3-COCH3] to the acryloyl complex R,S-[(η5-C5H5Fe(CO)(PPh3)-COCHCH2)] to generate exclusively the single diastereoisomer of the glutaroyl complex RR,SS-[(η5-C5H5)Fe(CO)(PPh3)COCH2]2CH2.  相似文献   

9.
The synthesis and characterization of optically active olefinic complexes of the type [(η-C5H5)Ru{Ph2PCH(CH3)CH2PPh2}(CH2CHR″)]PF6 (R″  H, CH3, C6H5, COOCH3), in which the metal is a stereogenic center, are reported. The enantioface discrimination of the prochiral olefin is influenced by the chiral ligand and by the stereogenic metal atom. The chiral center at the metal appears to be optically labile. The rates of the epimerization at the metal and of the olefin enantioface depend on the structure of the coordinated olefin.  相似文献   

10.
The behavior of [Fe(2) (CO)(4) (κ(2) -PNP(R) )(μ-pdt)] (PNP(R) =(Ph(2) PCH(2) )(2) NR, R=Me (1), Ph (2); pdt=S(CH(2) )(3) S) in the presence of acids is investigated experimentally and theoretically (using density functional theory) in order to determine the mechanisms of the proton reduction steps supported by these complexes, and to assess the role of the PNP(R) appended base in these processes for different redox states of the metal centers. The nature of the R substituent of the nitrogen base does not substantially affect the course of the protonation of the neutral complex by CF(3) SO(3) H or CH(3) SO(3) H; the cation with a bridging hydride ligand, 1?μH(+) (R=Me) or 2?μH(+) (R=Ph) is obtained rapidly. Only 1?μH(+) can be protonated at the nitrogen atom of the PNP chelate by HBF(4) ?Et(2) O or CF(3) SO(3) H, which results in a positive shift of the proton reduction by approximately 0.15?V. The theoretical study demonstrates that in this process, dihydrogen can be released from a η(2) -H(2) species in the Fe(I) Fe(II) state. When R=Ph, the bridging hydride cation 2?μH(+) cannot be protonated at the amine function by HBF(4) ?Et(2) O or CF(3) SO(3) H, and protonation at the N atom of the one-electron reduced analogue is also less favored than that of a S atom of the partially de-coordinated dithiolate bridge. In this situation, proton reduction occurs at the potential of the bridging hydride cation, 2?μH(+) . The rate constants of the overall proton reduction processes are small for both complexes 1 and 2 (k(obs) ≈4-7?s(-1) ) because of the slow intramolecular proton migration and H(2) release steps identified by the theoretical study.  相似文献   

11.
The complex [(η5-C5H5)Fe(CO)(PPh3)CH2CH3] is shown by 1H NMR spectroscopy and an X-ray crystal structure analysis to adopt a single conformation with the methyl group residing between the cyclopentadienyl and carbon monoxide ligands.  相似文献   

12.
Further studies of the reactions between ruthenium σ-acetylide complexes and electrophilic olefins CHArC(CN)(X) (Ar = C6H4NO2-4, Ph; X = CN; Ar = C6H4NO2-4, X = CO2Et) have shown the formation of allylic, butadienyl, and in one case, cyclobutenyl complexes. The direction of addition is such that the =C(CN)(X) group becomes attached to the α-carbon of the acetylide. This is confirmed by the X-ray structure of Ru{C[C(CN)2]CPhCH(C6H4NO2-4)}(dppe)(η-C5H5) · 0.5CH2Cl2, cr with cell dimensions a 28.81(1), b 9.661(2), c 30.782(8) Å, β 95.02 (3)°, and Z = 8. The structure was refined by a least-squares procedure with the use of 4291 statistically significant reflections [I > 2.5σ(I)] to R 0.075 and Rw 0.076.  相似文献   

13.
The coupling of [Ru(CO)2L(η4-cot)] (L = CO or PPh3, cot = cyclooctatetraene) with [Fe(CO)35-cyclohexadienyl)]+ or [Fe{P(OMe)3}(NO)23-allyl)]+ yields respectively the dimetallic species [Ru(CO)2L(η23-C8H8{Fe(CO)34-C6H7)}] (3) and the allyl-substituted derivative [Ru(CO)2L(η5-C8H8CH2C(Me)CH2)][PF6] (5) whose X-ray structure is reported; paramagnetic [Co(η-C5H5)2] and [Ru(CO)35-cyclohexadienyl)]+ give diamagnetic [Ru(CO)34-C6H7C5H6(o-C5H5)] (8) via CC bond formation and one-electron reduction.  相似文献   

14.
Degradation of a (-C7H7)(OC)2MoRu(CO)2(-C5H5)/carbon powder composite under appropriate thermal conditions affords a nanocomposite containing crystalline nanoclusters of Mo–Ru alloy highly dispersed on the carbon support. The alloy nanoparticles have an average diameter of 2.2 nm and crystallize as a fully disordered fcc lattice having a cell constant of 4.09 Å. When tested as an cathode catalyst in a direct methanol fuel cell, this nanocomposite shows significant methanol tolerance but affords current production too low to be of practical importance.  相似文献   

15.
The chiral aminoferrocenylphosphine [(η5-C5H4PPh2)(η5-C5H3(PPh2)CH(CH3)-N(CH3)CH2CH2N(CH3)2)Fe] (1) reacts with (H3C)2SAuCl to give neutral gold(I) complexes that are active catalysts for the enantioselective coupling of isocyanoacetate esters with aldehydes, forming dihydrooxazoles. The structure of the trimeric complex [(rac-1)2(AuCl)3] · Et2O has been determined by X-ray diffraction.  相似文献   

16.
RuHCl(PPh3)3 reacts quantitatively with cycloheptatriene in CH2Cl2 at 35°C in 15 min to give Ru(η5-C7H9)Cl(PPh3)2 and PPh3. The major isomer adopts a conformation with inequivalent phosphorus ligands and no plane of symmetry through the C7H9 ligand, but rapid intramolecular scrambling with δG3 = 10.6 kcal mol−1 results in an averaged 1H, 13C, and 31P NMR spectrum at room temperature. RuHCl(PPh3)3 reacts with cyclohepta-1,3-diene to give initially Ru(η3-C7H11)Cl(PPh3)2, but in a subsequent reaction this is dehydrogenated to give Ru(η5-C7H9)Cl(PPh3)2.  相似文献   

17.
Treatment of [Mo(CO)3(η-C7H7)][BF4] with either sodium amalgam or sodium naphthalide results in a reductive dimerisation to the ditropyl complex “Mo(CO)326,η′6-C14H14). The results of an X-ray crystallographic study confirm that the hydrogen atoms of the linking carbon atoms are both endo with respect to molybdenum. The reaction of Mo(CO)6 with ditropyl, C14H14, leads to all three possible isomers of “Mo(CO)326,η′6-C14-H14). The structure of each is assigned by its 1H NMR spectrum.  相似文献   

18.
The reaction of the heterobinuclear metal -allenyl complexes (PPh3)2Pt(- 1: 2 , -C(R)=C=CH2)Ru(CO)Cp (R=H (1), Ph (2)) with (PPh3)AuO3SCF3 in THF at –78°C to room temperature affords the trimetallic products [(PPh3)2Pt( 2-CO)RuCpAu(PPh3)( 3- 1: 3: 1-CH2CCR)]+O3SCF 3 (R=H (3), Ph (4)) in 46 and 55% isolated yield, respectively. The products were characterized by a combination of elemental analysis, FAB mass spectrometry, and IR and 1H, 13C, and 31P NMR spectroscopy. The structure of 4 was elucidated by a single-crystal X-ray analysis. The crystal contains discrete trimetallic RuPtAu cations and CF3SO 3 anions. In the cation, a Pt–Ru bond of 2.7171(6) Å is supported by a semibridging CO and a CH2CCPh allyl, which is 3-bonded to Ru, and 1-bonded to each of Pt (through the CPh carbon) and Au (through the central carbon). The Ph3P–Au–C fragment is close to linear (175.0(2)°), and the coordination environment around Pt is distorted square planar. Complex 3 appears to have the same type of structure as 4 from spectroscopic data.  相似文献   

19.
The structure of the vinylidene cluster [2-Ph2P(CH2)3PPh2]PdFe3(4-C=CHPh)(CO)9 was established by X-ray diffraction analysis. The metal core of the molecule has a butterfly shape with the Pd atom occupying a wingtip position. The C(1)=C(2)HPh ligand is -bound to three atoms of the Fe2Pd triangle through the C(1) atom and is 2-coordinated to the Fe atom located in the second wingtip position via the C(1)=C(2) double bond. The Pd atom is chelated by the diphosphine ligand.  相似文献   

20.
It is shown that (1,2,7-η3-2-Me-benzyl)(η5-C5H5)Mo(CO)2 exits in solution as one isomer which is fluxional, probably via (7-η1-2-Me-benzyl)((η5-C5H5)Mo(CO)2, with ΔG370 = 23.6 ± 1.0 kcal mol−1. In contrast, (1,2,7-η3-3-Me-benzyl)(η5-C5H5)Mo(CO)2 exits as two isomers at −20°C, which undergo interconversion at room temperature with ΔG 15.7 kcal mol−1. This dynamic process is an allyl rotation. It is probable that there is also a low energy [1,5]-sigmatropic shift.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号