首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compatibility or miscibility of polyethersulfones (ICI: Victrex 100P and 300P) and a tetrafunctional epoxy (Ciba-Geigy: MY-720), cured with an aromatic anhydride, has been studied using scanning electron microscopy, x-ray microanalysis, and dynamic mechanical spectroscopy. Fracture toughness of epoxy and blends of an epoxy and polyethersulfones has been measured using three-point bend tests (ASTM: E-399–81), and the energy release rate (GIC) for the three materials has been compared as a function of test temperature. Fracture surfaces were examined by x-ray microanalysis for detecting concentration of sulfur, present in polyethersulfones, in the matrix and precipitated phase. The influence of morphology of epoxy/polyethersulfone blends on its fracture toughness and toughening mechanism has been studied. A toughening criterion is proposed.  相似文献   

2.
A model epoxy resin/anhydride system, modified with a polyethersulfone (PES) engineering thermoplastic toughening agent, has been studied under hydrothermal ageing in order to investigate the modification of the thermal, morphological and mechanical behaviour through dynamical mechanical thermal analysis, SEM microscopy and fracture toughness test respectively. Two different concentrations of the toughening agent were used in the blends and two ageing conditions have been considered, consisting of the immersion of the samples in distilled water at constant temperature of 70 °C for 1 week and for 1 month. Dynamical mechanical thermal analysis results on hydrothermally aged materials indicated the occurrence of progressive segregation effects with the formation of regions with different cross-linking degrees.Fracture toughness tests showed an increase of the KIC value with the increase of the toughening agent concentration, revealing both a dramatic decrease of the same parameter after 1 week ageing for all the materials and the tendency to reach an almost constant value after 1 month ageing for all the formulations, with a slight increase with respect to 1 week ageing. These results have been interpreted on the basis of the SEM analysis, showing the presence of a well defined micrometric PES particles distribution in the epoxy/anhydride matrix, and discussed in the light of different water absorption mechanisms at short and long ageing times.  相似文献   

3.
The properties of diglycidyl ether of bisphenol-A epoxy resin toughened with poly(ether sulfone ether ketone) (PESEK) and poly(ether sulfone) (PES) polymers were investigated. PESEK was synthesised by the nucleophilic substitution reaction of 4,4’-difluorobenzophenone with dihydroxydiphenylsulfone using sulfolane as solvent and potassium carbonate as catalyst at 230 °C. The T g–composition behaviour of the homogeneous epoxy resin/PESEK blend was modelled using Fox, Gordon–Taylor and Kelley–Bueche equations. A single relaxation near the glass transition of epoxy resin was observed in all the blend systems. From dynamic mechanical analysis, the crosslink density of the blends was found to decrease with increase in the thermoplastic concentration. The storage modulus of the epoxy/PESEK blends was lower than that of neat resin, whilst it is higher for epoxy/PES blends up to glass transition temperature, thereafter it decreases. Scanning electron microscopic studies of the blends revealed a homogeneous morphology. The homogeneity of the blends was attributed to the similarity in chemical structure of the modifier and the cured epoxy network and due to the H-bonding interactions between the blend components. The fracture toughness of epoxy resin increased on blending with PESEK and PES. The increase in fracture toughness was due to the increase in ductility of the matrix. The thermal stability of the blends was comparable to that of neat epoxy resin.  相似文献   

4.
Two kinds of tough ductile heatresisting thermoplastic, namely bisphenol A polysulfone (PSF) and polyethersulfone (PES) were used to toughen thermoset epoxy resin. A systematic study on the relationship between the molecular weight and the terminal group of the thermoplastic modifier and the fracture toughness of the modified resin was carried out. The morphology of PSF modified epoxy resin was surveyed. With the same kind of PSF the structure of the epoxy resin and the toughening effect of PSF was also investigated. The fractography of PSF, particle modified epoxy was examined in detail with SEM. The contribution of every possible energy absorption process has been discussed. Crack pinning mechanism seems to be the most important toughening mechanism for tough ductile thermoplastic PSF particle modified epoxy system.  相似文献   

5.
The fracture behavior of a core-shell rubber (CSR) modified cross-linkable epoxy thermoplastic (CET) system, which exhibits high rigidity, highT g, and low crosslink density characteristics, is examined. The toughening mechanisms in this modified CET system are found to be cavitation of the CSR particles, followed by formation of extended shear banding around the advancing crack. With an addition of only 5 wt.% CSR, the modified CET possesses a greater than five-fold increase in fracture toughness (G IC) as well as greatly improved fatigue crack propagation resistance properties, with respect to those of the neat resin equivalents. The fracture mechanisms observed under static loading and under fatigue cyclic loading are compared and discussed.  相似文献   

6.
Although epoxy resins are used in a broad variety of applications due to their good mechanical and thermal properties, their low fracture toughness is a limitation, exhibiting brittle behavior. This study explored the potential use of imidazolium ionic liquids (IL) as toughening agents for epoxy resin based on diglycidyl ether of bisphenol A (DGEBA) with triethylenetetramine (TETA) as curing agent. Fracture toughness was evaluated for DGEBA-TETA epoxy resins with eleven imidazolium IL and the best results were found for the IL with the chloride anion and the shortest N-alkyl side chain, C4MImCl. The use of 1.0 phr of C4MImCl lead to the reduction of the crosslink density of the post-cured resin, resulting in the increase of 25.5% in stress intensity factor and 8.2% in tensile strength with no significant loss in other mechanical properties.  相似文献   

7.
Modification of epoxy resin using reactive liquid (ATBN) rubber   总被引:5,自引:0,他引:5  
Epoxy resins are widely utilised as high performance thermosetting resins for many industrial applications but unfortunately some are characterised by a relatively low toughness. In this respect, many efforts have been made to improve the toughness of cured epoxy resins by the introduction of rigid particles, reactive rubbers, interpenetrating polymer networks and engineering thermoplastics within the matrix.In the present work liquid amine-terminated butadiene acrylonitrile (ATBN) copolymers containing 16% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin using polyaminoimidazoline as a curing agent. The chemical reactions suspected to take place during the modification of the epoxy resin were monitored and evidenced using a Fourier transform infrared. The glass transition temperature (Tg) was measured using a differential scanning calorimeter. The mechanical behaviour of the modified epoxy resin was evaluated in terms of Izod impact strength (IS), critical stress intensity factor, and tensile properties at different modifier contents. A scanning electron microscope (SEM) was used to elucidate the mechanisms of deformation and toughening in addition to other morphological features. Finally, the adhesive properties of the modified epoxy resin were measured in terms of tensile shear strength (TSS).When modifying epoxy resin with liquid rubber (ATBN), all reactivity characteristics (gel time and temperature, cure time and exotherm peak) decreased. The infrared analysis evidenced the occurrence of a chemical reaction between the two components. Addition of ATBN led to a decrease in either the glass transition temperature and stress at break accompanied with an increase in elongation at break and the appearance of some yielding. As expected, the tensile modulus decreased slightly from 1.85 to about 1.34 GPa with increasing ATBN content; whereas a 3-fold increase in Izod IS was obtained by just adding 12.5 phr ATBN compared to the unfilled resin. It is obvious that upon addition of ATBN, the Izod IS increased drastically from 0.85 to 2.86 kJ/m2 and from 4.19 to 14.26 kJ/m2 for notched and unnotched specimens respectively while KIC varies from 0.91 to 1.49 MPa m1/2 (1.5-fold increase). Concerning the adhesive properties, the TSS increased from 9.14 to 15.96 MPa just by adding 5 phr ATBN. Finally SEM analysis results suggest rubber particles cavitation and localised plastic shear yielding induced by the presence of the dispersed rubber particles within the epoxy matrix as the prevailing toughening mechanism.  相似文献   

8.
A silicon compound (GAPSO) was synthesized to modify the diglycidyl ether of bisphenol-A (DGEBA). The chemical structure of GAPSO was confirmed using FT-IR, 29Si NMR and GPC. The mechanical and thermal properties and morphologies of the cured epoxy resins were investigated by impact testing, tensile testing, differential scanning calorimetry and environmental scanning electron microscopy. The impact strength and tensile strength were both increased by introducing GAPSO, meanwhile the glass transition temperature (Tg ) was not decreased and the morphologies of the fracture surfaces show that the compatibility of GAPSO with epoxy resin was very good and the toughening follows the pinning and crack tip bifurcation mechanism. The high functional groups in GAPSO can react during the curing process, and chemically participate in the crosslinking network. GAPSO is thus expected to improve the toughness of epoxy resin, meanwhile maintain the glass transition temperature.  相似文献   

9.
This work deals with the toughening effect of flaky WS2 and fullerene‐like WS2 (IF‐WS2) nanoparticles on epoxy with varying network properties. Reducing the amount of curing agent resulted in decreased crosslink density as measured by dynamic‐mechanic analysis and double‐quantum nuclear magnetic resonance spectroscopy. Although that lead to moderate changes in the epoxy's tensile properties, its fracture toughness dropped drastically, probably due to an increased defect fraction. IF‐WS2 could be dispersed significantly more effectively within epoxy resin than flaky WS2, possibly due to its spherical shape, but caused less toughening. IF‐WS2 tended to debond from the epoxy, while flaky WS2 introduced more secondary cracks. Both increased the fracture toughness of the (brittle) substoichiometric, but not that of the (tough) stoichiometric epoxy, possibly due to their interaction with molecular defects. Irrespective of which mechanism resulted in the toughening effect, its effectiveness depended strongly on the epoxy matrix. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1738–1747  相似文献   

10.
We report our finding of an optimal length scale for toughening of epoxies using spherical micelles formed by block copolymers. The amphiphilic diblock copolymer poly(hexylene oxide)‐poly(ethylene oxide) (PHO‐PEO) with 30 wt % PEO self‐assembled to form spherical micelles in a bisphenol A epoxy resin with a phenol novolac hardener. We systematically increased the size of the spherical micelles from 20–30 nm to 0.5–10 μm by swelling their PHO core using PHO homopolymer. Although all the blends were tougher than the unmodified epoxy, the largest enhancement of fracture resistance was measured in blends containing 0.1–1 μm spherical inclusions. This enhanced toughness was correlated with plastic deformation by shear banding in tensile test and greater roughness of the fracture surface. Smaller micelles neither induced plastic deformation nor contributed to surface roughness significantly whereas larger micelles acted as local defects resulting in early failure. These findings provide a framework in assessing the toughening effects of blended block copolymers on epoxy resins. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1125–1129, 2009  相似文献   

11.
Three different commercial triblock copolymers from Arkema were evaluated as potential toughening agents for two different lightly crosslinked epoxies. It was found that the plane strain fracture toughness, KIC, was on the order of 3.0 MPa√m for 10 parts per hundred resin (phr) of NanoStrength™ E20 resin (a styrene–butadiene–methylacrylate, SBM, type triblock copolymer) in epoxies cured with either aminoethylpiperazine or piperidine. In contrast, 10 phr NanoStrength E40 resin (also an SBM type triblock copolymer) was ineffective in toughening such epoxies. The difference in toughening effectiveness was attributed to the smaller amount of polybutadiene present in the E40 resin. The third toughening agent from Arkema was NanoStrength M22 resin, which is a symmetric triblock copolymer consisting of side blocks of PMMA surrounding a center block of poly(butyl acrylate) and is designated as MAM. At 10 phr MAM both lightly crosslinked epoxies exhibited improvements in toughness. Morphologies were characterized using TEM and toughening mechanisms revealed using SEM and TOM. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1470–1481, 2007  相似文献   

12.
A novel renewable resource based tri-functional epoxy resin from itaconic acid (TEIA) was blended with petroleum based epoxy resin (DGEBA) and fabricated at different ratios. Then, it was by thermally cured with methylhexahydrophthalic anhydride (MHHPA) in presence of 2-methylimidazole (2-MI) catalyst. The tensile, modulus, strength of virgin epoxy resin (41.97 MPa, 2222 MPa) increased to 47.59 MPa, 2515 MPa, respectively, with the addition of 30% of TEIA. The fracture toughness parameter, critical stress intensity factor (KIC) revealed enhancement of toughness in the TEIA bio-based blends system. The thermomechanical properties of TEIA (tri-functional epoxy resin from itaconic acid) modified petroleum-epoxy networks were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and dynamic mechanical analysis (DMA). The fracture morphology was also studied by the scanning electron microscopy and atomic force microscopy respectively.  相似文献   

13.
Herein,we designed a core-shell structured bottlebrush copolymer (BBP),which is composed of rubbery poly(butyl acrylate) (PBA)core and an epoxy miscible/reactive poly(glycidyl methacrylate) (PGMA) shell,as an epoxy toughening agent.The PGMA shell allows BBP to be uniformly dispersed within the epoxy matrix and to react with the epoxy groups,while the rubbery PBA block simultaneously induced nanocavitation effect,leading to improvement of mechanical properties of the epoxy resin.The mechanical properties were measured by the adhesion performance test,and the tensile and fracture test using universal testing machine.When BBP additives were added to the epoxy resin,a significant improvement in the adhesion strength (2-fold increase) and fracture toughness (2-fold increase in Klc and 5-fold increase in Glc)compared to the neat epoxy was observed.In contrast,linear additives exhibited a decrease in adhesion strength and no improvement of fracture toughness over the neat epoxy.Such a difference in mechanical performance was investigated by comparing the morphologies and fracture surfaces of the epoxy resins containing linear and BBP additives,confirming that the nanocavitation effect and void formation play a key role in strengthening the BBP-modified epoxy resins.  相似文献   

14.
In this paper, we review recent progress made in the field of epoxy-based binary and ternary nanocomposites containing three-, two-, and one-dimensional (i.e., 3D-, 2D-, and 1D) nano-size fillers with a special focus on their fracture behaviors. Despite investigations conducted so far to evaluate the crack-resistance of epoxy nanocomposites and attempts made to clarify the controlling toughening mechanisms of these materials, some questions remain unsolved. It is shown that silica nanoparticles can be as effective as rubber particles in improving the fracture toughness/energy; but incorporation of carbon nanotubes (CNTs) or clay platelets in epoxy matrices delays crack growth only modestly. The “nano” effects of silica (<25 vol.%) and rubber (>10 wt.%) nanoparticles in toughening epoxy resin are confirmed by comparison with silica and rubber micro-particles of the same loading. There is clear evidence of both synergistic and additive toughening effects in the silica/rubber/epoxy ternary nanocomposites. In addition, positive hybrid toughening effect has been observed in the nano-rubber/CNT/epoxy composites; however, a negative hybrid effect is predominant in nano-clay/nano-rubber/epoxy ternary nano-composites. Future research directions for epoxy-based nanocomposites towards multi-functional applications are discussed.  相似文献   

15.
Block copolymers with and without reactive functionalities can improve fracture resistance in brittle epoxies even when added in relatively small amounts (<5 wt %). At certain compositions, amphiphilic block copolymers spontaneously self‐assemble into vesicles, spherical micelles, or wormlike micelles in thermoset resins, and these morphologies are retained with the full curing of the resins. The addition of such block copolymers leaves the glass‐transition temperature of these blends relatively unchanged, whereas the fracture resistance increases up to a factor of 3.5 for the vesicle‐modified blends. For epoxies modified with block copolymers self‐assembled into a spherical geometry (vesicles or spherical micelles), the fracture resistance scales with the ratio of the interparticle distance to the average vesicle (or spherical micelle) diameter (Di/Dp) and increases as this quantity is reduced. Greater adhesion between the vesicle and epoxy resin improves the fracture resistance only at higher values of Di/Dp, at which the materials are more brittle. Debonding and subsequent matrix plastic deformation are identified as the toughening mechanisms in these blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 2444–2456, 2003  相似文献   

16.
The properties and morphologies of UV‐cured epoxy acrylate (EB600) blend films containing hyperbranched polyurethane acrylate (HUA)/hyperbranched polyester (HPE) were investigated. A small amount of HUA added to EB600 improved both the tensile strength and elongation at break without damaging its storage modulus (E′). The highest tensile strength of 31.9 MPa and an elongation at break around two times that of cured pure EB600 were obtained for the EB600‐based film blended with 10% HUA. Its log E′ (MPa) value was measured to be 9.48, that is, about 98% of that of the cured EB600 film. The impact strength and critical stress intensity factor (K1c) of the blends were investigated. A 10 wt % HUA content led to a K1c value 1.75 times that of the neat EB600 resin, and the impact strength of the EB600/HPE blends increased from 0.84 to 0.95 kJ m?1 with only 5 wt % HPE addition. The toughening effects of HUA and HPE on EB600 were demonstrated by scanning electron microscopy photographs of the fracture surfaces of films. Moreover, for the toughening mechanism of HPE to EB600, it was suggested that the HPE particles, as a second phase in the cured EB600 film, were deformed in a cold drawing, which was caused by the difference between the elastic moduli of HPE and EB600. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3159–3170, 2005  相似文献   

17.
Hydroxyl terminated poly(ether sulfone) (PES) has been grafted on multi‐walled carbon nanotube (MWCNT). The grafting reaction was confirmed by different characterization techniques such as Fourier transform infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and transmission electron microscopy. The extent of the grafting was found to be around 58 wt%. Hybrid nanocomposite of epoxy with the modified MWCNT was also prepared. Effect of grafting on the mechanical, thermal, and viscoelastic properties was studied. Dynamic mechanical studies show an increase in the storage modulus for the nanocomposite prepared using PES‐grafted MWCNT compared with neat epoxy system. PES‐grafted MWCNT–epoxy nanocomposite induces a significant increase in both tensile strength (26%) and fracture toughness (125%) of the epoxy matrix. Field emission scanning electron micrographs of fractured surfaces were examined to understand the toughening mechanism. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
The effects of the hyperbranched polyester with hydroxyl end groups (HBPE‐OH) on the curing behavior and toughening performance of a commercial epoxy resin (diglycidyl ether of bisphenol A, DGEBA) were presented. The addition of HBPE‐OH into DGEBA strongly increased its curing rate and conversion of epoxide group due to the catalytic effect of hydroxyl groups in HBPE‐OH and the low viscosity of the blend at curing temperature. The improvements on impact strength and critical stress intensity factor (or fracture toughness, K1c) were observed with adding HBPE‐OH. The impact strength was 8.04 kJ m?1 when HBPE‐OH reached 15 wt% and the K1c value was approximately two times the value of pure epoxy resin when HBPE‐OH content was 20 wt%. The morphology of the blends was also investigated, which indicated that HBPE‐OH particles, as a second phase in the epoxy matrix, combined with each other as the concentration of HBPE‐OH increased. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
One-pot hydrothermal reduction of graphene oxide (GO) in N-methyl-2-pyrrolidone (NMP) suspension was performed, wherein GO surface were functionalized by free radicals generated from NMP molecules. The NMP functionalized reduced GO (NMPG) nanosheets were then incorporated into epoxy matrix to prepare epoxy composites. The significant improvement of 100 and 240% in fracture toughness (critical intensity factor, KIC) and fracture energy (critical strain energy release rate, GIC) achieved from single edge notched bending (SENB) test revealed the excellent toughening ability of NMPG. The improved compatibility and interfacial interaction between the epoxy matrix and NMPG yielded∼28, 19 and 51% improvement in tensile strength, Young's and storage modulus, respectively. Thermal stability of pure epoxy and its composites was determined at 5, 10 and 50% weight loss, which showed 30, 27.5 and 29 °C improvement with 0.2 wt% NMPG loading. The work provides a simple method to prepare graphene-based epoxy composites with improved performance.  相似文献   

20.
The microstructure and mechanical properties of a block copolymer modified commercial thermoset plastic formed from a bisphenol-A based epoxy and a bio-derived amine hardener (Cardolite® NC-541LV) were investigated. A series of poly(ethylene oxide)-b-poly(butylene oxide) (PEO-PBO) diblock copolymers was synthesized at fixed composition (31 ± 1% by volume PEO) and varying molecular weight expanding on a commercially available PEO-PBO compound marketed by the Dow Chemical Company under the trade name FORTEGRA™ 100; direct application of any of these block copolymers resulted in little improvement of the poor fracture toughness of the cured material. Modification of the resin formulation and curing protocol led to the development of well-defined spherical and branched worm-like micelles containing a PBO core and PEO corona in the cross-linked products as evidenced by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS) measurements. Maximum fracture toughness (K1c) and a ninefold increase in the critical strain energy release rate (G1c) over the unmodified neat epoxy was achieved at 5 wt % loading of intermediate molecular weight PEO-PBO, without measureable reductions in modulus, glass transition temperature or transparency. This study provides new strategies for engineering improved performance in thermoset materials using block copolymer additives that exhibit challenging mixing thermodynamic characteristics with the component monomers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 189–204  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号