首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary blends of poly(vinyl chloride) (PVC) and chitin-graft-poly(2-methyl-2-oxazoline) showed miscibility in the blend fraction range of the latter lower than ca. 10 wt.-%. The glass transition temperature of PVC, which was determined by differential scanning calorimetry, changed to lower temperatures with increasing modified chitin contents up to 10 wt.-%. Segmental interaction between PVC and the graft copolymer was confirmed by the carbonyl stretching band shift in the FT-IR analysis.  相似文献   

2.
《Thermochimica Acta》1991,184(2):183-191
The thermal degradation of a series of 18 copolymers corresponding to poly(p-methoxy-phenylmaleimide-co-2-methyl-2-oxazoline), poly(p-methoxyphenylmaleimide-co-2-ethyl-2-oxazoline), poly(p-nitrophenylmaleimide-co-2-methyl-2-oxazoline) and poly(p-nitrophenyl-maleimide-co-2-ethyl-2-oxazoline) has been invesugated using thermogravimetry in the temperature range 20–500 ° C. All the copolymers degrade in one step. The kinetic parameters Ea, n and A have been calculated. The thermal stability depends on the copolymer composition.  相似文献   

3.
Thermo-sensitive poly(2-isopropyl-2-oxazoline)s (PiPrOx) were functionalized with end groups of different polarity by living cationic ring-opening polymerization using the initiator and/or termination method as well as sequential block copolymerization with 2-methyl-2-oxazoline. As end groups, methyl, n-nonyl, piperidine, piperazine as well as oligo(ethylenglygol) and oligo(2-methyl-2-oxazoline) were introduced quantitatively. The lower critical solution temperature (LCST) of the aqueous solutions was investigated. The introduction of hydrophobic end groups decreases the LCST, while hydrophilic polymer tails raise the cloud point. In comparison to poly(N-isopropyl acrylamide), the impact of the end group polarity upon the modulation of the LCST was found to be significantly stronger. Surprisingly, terminal oligoethylenegycol units also decrease the LCST of PiPrOx, thus acting as moieties of higher hydrophobicity as compared to the poly(2-oxazoline) main chain. Together with the possible variation of the side group polarity, this allows a broad modulation of the LCST of poly(2-oxazoline)s.  相似文献   

4.
A novel glycopeptide-containing block copolymer, poly[O-(tetra-O-acetyl-β-D -glucopyranosyl)-L -serine]-block-poly(2-methyl-2-oxazoline) ( 5 ), was synthesized by mutual termination of living polymerizations of a sugar-substituted α-amino acid N-carboxyanhydride (NCA) ( 1 ) and 2-methyl-2-oxazoline ( 3 ). 5 was deacetylated to provide the glycopeptide-polyoxazoline block copolymer, poly[O-(β-D -glucopyranosyl)-L -serine]-block-poly(2-methyl-2-oxazoline) ( 6 ).  相似文献   

5.
Novel linear polymer/dendrimer block copolymers, poly(2-methyl-2-oxazoline)-block-poly(amido amine) dendrimers (water-soluble full-generation type 4 (G = 4.0 and 5.0) and amphiphilic half-generation type 5 (G = 3.5, 4.5, and 5.5)), were synthesized by divergent-growth dendrimer construction with ω-ethylenediamine-terminated poly(2-methyl-2-oxazoline), which was prepared by living ring-opening polymerization of 2-methyl-2-oxazoline. Assembly of the amphiphilic dendrimer-based block copolymer (G = 5.5) was investigated by surface tension measurements (critical micelle concentration, 0.49 wt.-%) and by small-angle neutron scattering analysis (spherical particles; assembled number, ca. 103).  相似文献   

6.
In this work, a simple online preconcentration method for quantitative detection of pepsin was realized by using the binary mixed polymer brushes coated capillary with switchable properties toward protein adsorption. Firstly, the binary mixed polymer brushes were prepared by grafting poly(2-methyl-2-oxazoline) and poly(4-vinylpyridine) onto the inner wall of the capillary through a polydopamine anchor. Then the coatings were characterized by X-ray photoelectron spectrometer and electroosmotic flow measurement. The results indicated that the composition of coating could be controlled by varying the feed ratio of poly(2-methyl-2-oxazoline) to poly(4-vinylpyridine) and the inner surface charge could be tuned toward the change of pH and ionic strength. The results showed that when the poly(2-methyl-2-oxazoline)/poly(4-vinylpyridine) mass ratio was 80/20, the highest online preconcentration effect was obtained and the sensitivity enhancement factor was 6.3. Moreover, satisfactory sensitivity (limit of detection: 7.5 ng/mL) and good repeatability were obtained with the online preconcentration method. The polymer-coated capillary was still stable for online preconcentration and detection of pepsin after 50 consecutive runs. Last, the proposed method was used successfully to online preconcentrate pepsin in the saliva matrix.  相似文献   

7.
Cellulose - In this work, water-soluble polymers were screened through solution casting and polyvinyl alcohol (PVA) and poly(2-ethyl-2-oxazoline) (PEOX) were found as reinforcement agents for...  相似文献   

8.
Poly(2-alkyl-2-oxazoline)s having an acrylate group at both chain ends were synthesized by terminating living bifunctional poly(2-methyl-2-oxazoline) or poly(2-ethyl-2-oxazoline) with acrylic acid. These macromonomers have been polymerized to the corresponding polyoxazoline networks. Thermal as well as UV-initiated free radical polymerization were applied and the influence of the polymerization conditions and molecular weight of the prepolymer used on the properties of the networks were investigated. Both methods of polymerization produced high fractions of soluble material, probably due to the low concentration of the acrylate end groups.  相似文献   

9.
A protected aldehyde-functionalized 2-oxazoline, 2-[3-(1,3)-dioxolan-2-ylpropyl]-2-oxazoline (DPOx), was synthesized from commercially available compounds in high yields. The polymerization of DPOx with different initiators proceeds via a living ionic mechanism; thus, the polymers were of low polydispersity and the degree of polymerization could be precisely adjusted. Copolymerization with 2-methyl-2-oxazoline gave water-soluble statistical copolymers. Hydrolysis of the homo- and copolymers resulted in well-defined, aldehyde-bearing poly(2-oxazoline)s. The aldehyde side functions reacted quantitatively with an amino-oxy compound to form the corresponding oxime.  相似文献   

10.
Well-defined graft copolymers were obtained using a copper-catalysed azide-alkyne Huisgen's cycloaddition click reaction from both biocompatible and non-toxic poly(ε-caprolactone) and poly(2-methyl-2-oxazoline) homopolymers. Resulting amphiphilic copolymers proved to form micelles that could be used as potential drug carriers.  相似文献   

11.
The synthesis of poly(ethylene oxide-b-2-methyl-2-oxazoline) (PEO-POXZ) block copolymers was carried out by the polymerization of 2-methyl-2-oxazoline (MeOXZ) from monomethoxy poly(ethylene oxide) macroinitiator. The initiating functions were 4-chloromethylbenzoate or tosylate groups. The functionalization of α-methoxy-ω-hydroxy PEO was optimized by adjustment of the reaction temperature. The duplication side reaction was investigated in the case of tosylate functionalization. The determination of the propagation rate constants of the MeOXZ polymerization showed that the presence of the PEO chains decreased the propagation rate constant in the case of active species under the form of oxazolinium ions, while it increased the propagation rate constant in the case of covalent active species, most probably by partial ionization.  相似文献   

12.
王雨晨  王延梅 《色谱》2020,38(9):1022-1027
毛细管电泳作为一种常见的液相分离技术,因其分析速度快、分离效率高、样品消耗量少等特点,在蛋白质分离分析领域有广泛应用。然而,常用的熔融硅毛细管容易吸附蛋白质,导致电渗流不稳定,分离结果重现性变差;此外,商用毛细管电泳中常用的紫外检测器由于光程短,使得毛细管电泳的检测灵敏度往往不能达到低丰度蛋白质的直接分析要求。因此寻找能够阻止蛋白质吸附、同时能够提高检测灵敏度的涂层是毛细管电泳分离分析蛋白质的重要课题之一。聚(2-甲基-2-噁唑啉)(PMOXA)作为一种类肽类亲水性聚合物,具有与抗蛋白质吸附聚合物聚乙二醇类似的亲水性、抗蛋白质吸附性和生物相容性,而且其类肽结构使之具有较聚乙二醇更好的稳定性,因此近年来在生物质传递、药物载体和阻抗蛋白质吸附等领域得到越来越多的应用。该文主要从两个方面对聚(2-甲基-2-噁唑啉)在毛细管电泳中的应用进行了阐述。一是利用多巴胺作为黏合层将其涂覆在毛细管内壁作为抗蛋白质吸附涂层,这种涂层不仅能成功分离多种蛋白质的混合物(如溶菌酶、细胞色素C、核糖核酸酶A和α-胰凝乳蛋白酶原A),而且在定量检测奶粉中三聚氰胺、乳铁蛋白的过程中,能阻抗其他蛋白质的非特异性吸附,提高了毛细管电泳对奶粉中三聚氰胺、乳铁蛋白的检测效率。二是将其与具有刺激响应性的聚合物(如聚丙烯酸)构成二元混合刷涂层,在一定的pH和离子强度条件下,涂层可吸附目标蛋白质(如牛血清白蛋白、溶菌酶),在另一pH和离子强度条件下可将吸附的目标蛋白质全部释放,同时在释放过程中,处于涂层表面的聚(2-甲基-2-噁唑啉)会进一步阻止蛋白质的吸附,释放的蛋白质在电渗流和电泳的双重作用下快速迁移,到达检测器的蛋白质瞬时浓度大大增加,使目标蛋白质得到富集,目标蛋白质的检测信号得到放大,从而达到了提高低丰度蛋白质检测灵敏度的目的。此外,该文还对聚(2-甲基-2-噁唑啉)在毛细管电泳分离蛋白质中的未来发展趋势进行了展望。  相似文献   

13.
A novel polydopamine-graft-poly(2-methyl-2-oxazoline)(PDA-g-PMOXA) coating was prepared by immobilizing poly(2-methyl-2-oxazoline)(PMOXA) onto material surfaces through polydopamine (PDA) anchored coating for the first time.And then,the chemical composition,hydrophilicity,and protein-resistant properties of the PDA-g-PMOXA coating were studied using X-ray photoelectron spectroscopy(XPS),contact angel(CA) test,surface plasmon resonance(SPR),and quartz crystal microbalance with dissipation(QCM-D) measurement.Finally,the coating was applied to the capillary inner surface for protein separation by capillary electrophoresis(CE).  相似文献   

14.
Poly(2-methyl-2-oxazoline) (PMeOx), poly(2-ethyl-2-oxazoline) (PEtOx), poly(2-n-butyl-2-oxazoline) (PBuOx), and poly(2-phenyl-2-oxazoline) (PPhOx) are selected as poly(2-oxazoline) (POX) models to study the effect of pendant groups on their blood compatibility and hydration states. A comprehension of this can provide a perspective for understanding the biocompatibility of PMeOx and PEtOx in water-polymer interactions and may inspire the development of novel blood-compatible POX derivatives. The aforementioned four POXs are grafted onto glass substrates via photo-grafting, and their blood compatibility is estimated via platelet adhesion and the degree of denaturation of the adsorbed fibrinogen. The hydration states of the POXs are investigated using differential scanning calorimetry and attenuated total reflection infrared spectroscopy. Intermediate water is found to be present in hydrated PMeOx and PEtOx, but is observed to be scarce in hydrated PBuOx and PPhOx. This could be the reason for the biocompatibility of PMeOx and PEtOx. The carbonyl groups in PMeOx and PEtOx can be fully hydrated. However, in PBuOx and PPhOx, water mainly exists as bulk water. The hydration of the carbonyl groups is hindered by the bulky side chains, and IW cannot be generated.  相似文献   

15.
poly[isobutene-co-(p,m-chloromethylstyrene)]-graft-poly(2-methyl-2-oxazoline) graft copolymers ( GP ) were prepared by the “grafting from” method throught the cationic polymerization of 2-methyl-2-oxazoline (MeOXA) initiated by a statistical copolymer is isobutene and chloromethylstyrene. The unusual viscosity behavior in chloroform solution of these polymers, the dynamic laser light scattering analysis in aqueous solution, as well as the solubility in polar solvents like water and methanol demonstrate the amphiphilic character of the graft copolymers and indicate the formation of aggregates in solution.  相似文献   

16.
Summary: The synthesis of triblocks poly(2-methyl-2-oxazoline-b-tetrahydrofurane-b-2-methyl-2-oxazoline) has been developed. It was shown that the technique of polymerization of the second block from the living species created on the two chain ends of poly(THF) is successful but makes the control of the size of the poly(THF) block difficult due a fast depolymerization upon the introduction of the second monomer. A purification technique was used to get rid of the possible homopoly(2-methyl-2-oxazoline) formed. Various analytical techniques were used to characterize the behavior of the triblock and more particularly in the presence of DNA. Electrophoresis on agarose gels and neutron scattering, demonstrated that the neutral triblock does not appreciably interact with DNA. It was also shown that the triblock for which approximately half (47%) of the methyloxazoline units were transformed into ethylenimine units by hydrolysis gives only loose interactions with DNA. This result is assigned to the fact that charge density plays a major role in the interactions of positive polyelectrolytes with the negatively charged DNA. The triblock was shown being able to interact with bilayer lipid membranes mimicking cell membranes. The efficiency of the hydrolysed triblock was much higher, while the size of holes created in the membranes is not large enough to give passage to DNA.  相似文献   

17.
The present study expands the versatility of cationic poly(2-oxazoline) (POx) copolymers as a polyethylene glycol (PEG)-free platform for gene delivery to immune cells, such as monocytes and macrophages. Several block copolymers are developed by varying nonionic hydrophilic blocks (poly(2-methyl-2-oxazoline) (pMeOx) or poly(2-ethyl-2-oxazoline) (pEtOx), cationic blocks, and an optional hydrophobic block (poly(2-isopropyl-2-oxazoline) (iPrOx). The cationic blocks are produced by side chain modification of 2-methoxy-carboxyethyl-2-oxazoline (MestOx) block precursor with diethylenetriamine (DET) or tris(2-aminoethyl)amine (TREN). For the attachment of a targeting ligand, mannose, azide-alkyne cycloaddition click chemistry methods are employed. Of the two cationic side chains, polyplexes made with DET-containing copolymers transfect macrophages significantly better than those made with TREN-based copolymer. Likewise, nontargeted pEtOx-based diblock copolymer is more active in cell transfection than pMeOx-based copolymer. The triblock copolymer with hydrophobic block iPrOx performs poorly compared to the diblock copolymer which lacks this additional block. Surprisingly, attachment of a mannose ligand to either copolymer is inhibitory for transfection. Despite similarities in size and design, mannosylated polyplexes result in lower cell internalization compared to nonmannosylated polyplexes. Thus, PEG-free, nontargeted DET-, and pEtOx-based diblock copolymer outperforms other studied structures in the transfection of macrophages and displays transfection levels comparable to GeneJuice, a commercial nonlipid transfection reagent.  相似文献   

18.
用DSC、WAXD和SAXS研究了聚乙烯醇(PVAl)/聚乙烯基吡咯烷酮(PVP)共混体系的结晶行为.PVAl的结晶度随PVP含量增加而减少,并存在结晶度为零的组成(PVAl)的重量分数约为50%.与纯PVAl相比,共混物的温度区间T_m-T_g减小,表明PVP对PVAl的结晶起抑制作用.共混物中PVAl的结晶速度下降,具体表现为PVAl过冷区随PVP含量增加而扩大,动力学速度常数减小,球晶增长速度下降.纯PVAl和共混体系的等温结晶速率均遵循Avrami方程.退火样品的长周期、片晶厚度和过渡层厚度大于相同组成未退火样品.两者长周期随PVP含量增长加显著增大,片晶厚度增长次之,过渡层厚度变化不大.  相似文献   

19.
Poly(N-acetylethylenimine) (polyoxazoline) (POZO) with a terminal triethoxysilyl group was successfully synthesized by the ring-opening polymerization of 2-methyl-2-oxazoline followed by termination with 3-aminopropyltriethoxysilane. Triethoxysilyl-terminated telechelic POZO was prepared by using a bifunctional initiator. These silane coupling POZOs were subjected to acid-catalyzed cohydrolysis polymerization with tetraethoxysilane by the so-called “sol-gel” method to produce a novel organic/inorganic hybrid polymer (block copolymer), which was a homogeneous transparent/glassy composite material. The obtained hybrid showed higher hydrophilic properties compared with silica gel without POZO segments. On the other hand, a hybrid polymer consisting of poly(2-ethyl-2-oxazoline) and silica gel, which absorbed both water and organic solvents, showed amphiphilic properties. POZO segments were eliminated by pyrolysis of the present hybrid polymer to produce a silica with micropores.  相似文献   

20.
The degradation of the binary polymer blends, poly(vinyl acetate)/poly(vinyl chloride), poly(vinyl acetate)/poly(vinylidene chloride) and poly(vinyl acetate)/polychloroprene has been studied by using thermal volatilization analysis, thermogravimetry, evolved gas analysis for hydrogen chloride and acetic acid, and spectroscopic methods. For the first two systems named, strong interaction occurs in the degrading blend, but the polychloroprene blends showed no indication of interaction. In the PVA/PVC and PVA/PVDC blends, hydrogen chloride from the chlorinated polymer causes substantial acceleration in the deacetylation of PVA. Acetic acid from PVA destabilizes PVC but has little effect in the case of PVDC because of the widely differing degradation temperatures of PVA and PVDC. The presence of hydrogen chloride during the degradation of PVA results in the formation of longer conjugated sequences, and the regression in sequence length at high extents of deacetylation found for PVA degraded alone is not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号