首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
ABSTRACT

Copolymers of 1,5-dioxepan-2-one (DXO) and e-caprolactone (?-CL), δ-valerolactone (δ-VL) or L-lactide (LLA) have been synthesized and characterized. High molecular weight copolymers were obtained using stannous-2-ethyl hexanoate as catalyst in bulk. Reactivity ratios for the copolymerization of DXO and δ-VL were determined at 110°C as rVL=0.5 and rDXO=2.3. At high conversion, depolymerization of δ-VL occurred, resulting in lower molecular weight and variations in the copolymer composition.

Physical properties, such as crystallinity and melting temperature of the DXO-copolymers proved to be strongly dependent on the choice of comonomer and on the molar composition of the copolymers. DXO appears to be incorporated into the poly-?-caprolactone (PCL) crystals and to some extent into the poly-δ-valerolactone (PVL) crystals, resulting in a more gradual decrease in crystallinity with increasing amount of DXO.  相似文献   

2.
The l-lactide (LLA) homopolymerization and copolymerization with ε-caprolactone (CL) in solution initiated by lanthanide tris(2,4,6-trimethylphenolate)s (Ln(OTMP)3) are systematically investigated. The results indicate that La(OTMP)3 is quite effective for the LLA polymerization. The 1H NMR spectrum suggests the homopolymerization proceeds through an acyl-oxygen bond cleavage. Thermal analysis of homopolymers by DSC shows typical features of optically pure PLLA. The copolymerization of LLA with CL can only be achieved when CL is first polymerized followed by LLA. Feeding the two monomers simultaneously, however, only results in the formation of LLA homopolymers. The structure of the copolymers has been characterized by 1H NMR and 13C NMR and the thermal behavior has also been evaluated. All these measurements demonstrate the pure diblock copolymer has been synthesized successfully.  相似文献   

3.
Ring-opening polymerization of cyclic monomers is the method of choice when tailor-made polymers and copolymers with heteroatoms in the main chain are to be prepared. Triblock copolymers comprising a poly(ethylene oxide) block [poly(EO)] and two poly(2,2-dimethyltrimethylene carbonate) blocks [poly(DTC)] were prepared using a telechelic poly(EO) as initiator for the DTC polymerization. These block copolymers dissolve suitable salts leading to solid polymeric electrolytes. The thermal properties and the ionic conductivity of these materials are presented. Block copolymers comprising a poly(tetrahydrofuran) block [poly(THF)] and a poly(trimethylene urethane) block [poly(TU)] were obtained by sequential cationic polymerization of THF and TU with methyl trifluoromethane-sulfonate as initiator. Mechanistic and kinetic aspects of the TU polymerization are discussed. To achieve the synthesis of block copolymers with a poly(L-lactide) block [poly(LLA)] and a poly(α-amino acid) block [poly(AA)] amino-terminated poly(LLA) was prepared which served as initiator for the polymerization of α-amino acid N-carboxyanhydrides.  相似文献   

4.
Ring‐opening copolymerization of L ‐lactide (LLA) and 1,3‐trimethylene carbonate (TMC) blends with LLA/TMC feed ratios from 90/10 to 50/50 was realized at 110 or at 180 °C for various time periods, using low toxic zirconium (IV) acetylacetonate (Zr(Acac)4) as initiator. The resulting copolymers exhibit different chain microstructures. Copolymers obtained at 110 °C exhibit a gradient chain structure with the presence of lactidyl sequences next to very short ones, and are semicrystalline. In contrast, copolymers obtained at 180 °C are amorphous because of a more random chain microstructure with the presence of larger amounts of medium sequences. Degradation of the copolymers was carried out in pH 7.4 phosphate buffer at 37 °C. Analytical techniques such as 1H NMR, DSC, GPC, and XRD were used to monitor the degradation. Initially amorphous copolymers can remain amorphous during degradation because of the highly random unit's distribution, and equivalent LLA and TMC contents. However, initially amorphous copolymers containing larger amounts of lactidyl units are able to crystallize during degradation because of the presence of relatively long LLA blocks. Insofar, as initially semicrystalline copolymers are concerned, degradation occurs preferentially in the amorphous zones. Therefore, various degradation behaviors and degradation rates can be obtained by varying the chemical composition, chain microstructure, and morphology of PLLA‐PTMC copolymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3869–3879, 2009  相似文献   

5.
A novel redox system, potassium ditelluratocuprate(III) (DTC)–chitosan, was employed to initiate the graft copolymerization of methyl methacrylate (MMA) onto chitosan in alkali medium. The effects of reaction variables, such as the initiator concentration, ratio of monomer to chitosan, the pH value, as well as reaction temperature and time were investigated, and the grafting conditions were optimized. Graft copolymers with both high grafting efficiency (>90%) and percentage of grafting were obtained, and the rate of polymerization is higher, which indicated that the DTC–chitosan redox system is an efficient initiator for this graft copolymerization. The structures and the thermal property of chitosan and chitosan–g–PMMA were characterized by infrared spectroscopy (IR), X‐ray diffraction and thermogravimetric analysis (TGA). A mechanism is proposed to explain the generation of radicals and the initiation. The graft copolymer was used as the compatibilizer in blends of terpolyamide and chitosan. The scanning electron microscope (SEM) photographs indicated that the graft copolymer improved the compatibility of the blend.  相似文献   

6.
The polymerization kinetics of 5‐[2‐{2‐(2‐methoxyethoxy)ethyoxy}‐ethoxymethyl]‐5‐methyl‐trimethylene carbonate (TMCM‐MOE3OM) synthesized using the organocatalyst 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU) were studied and compared to those with the commonly used catalyst/initiator for ring‐opening polymerization of cyclic carbonates and esters, stannous 2‐ethylhexanoate. Further, the utility of each of these catalysts in the copolymerization of TMCM‐MOE3OM with trimethylene carbonate (TMC) and l ‐lactide (LLA) was examined. Regardless of conditions with either catalyst, homopolymerization of TMCM‐MOE3OM yielded oligomers, having number average molecular weight less than 4000 Da. The resultant molecular weight was limited by ring‐chain equilibrium as well as through monomer autopolymerization. Interestingly, autopolymerization of TMC was also achieved with DBU as the catalyst. Copolymerization with TMC using stannous 2‐ethylhexanoate as the catalyst yielded random copolymers, while diblock copolymers were formed by copolymerization with LLA. With DBU as the catalyst, copolymers with LLA could not be formed, while blocky copolymers were formed with TMC. These findings should be useful in the incorporation of this monomer in the design of polymer biomaterials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 544–552  相似文献   

7.
An efficient electrochemiluminescent (ECL) single-use sensor for H(2)O(2) is presented based on an electropolymerized film prepared on screen-printed gold electrode (gold SPE). A study of the copolymerization of luminol in the presence of different monomers was carried out. The polymeric films were grown potentiodynamically with a potential interval between -0.2 and 1.0 V in 0.2 M H(2)SO(4) and were characterized by their electrochemical, electrochemiluminescent, and superficial features. The polymer with the most efficient growth and ECL emission was poly(luminol-3,3',5,5'-tetramethylbenzidine) at 1:5 ratio. These prepared SPE cells present good mechanical and photoemissive properties. A semi-logarithmic linearization shows a noticeable four decade-width concentration range with a limit of detection (LOD) of 2.6 × 10(-9) M and a precision of 10.2% (n = 5; as relative standard deviation, RSD) in the medium range level. The described SPE ECL sensors will be useful for the determination of oxidase substrates in ECL single-use biosensors.  相似文献   

8.
Wu B  Wang Z  Xue Z  Zhou X  Du J  Liu X  Lu X 《The Analyst》2012,137(16):3644-3652
Based on Ru(bpy)(3)(2+)-Au nanoparticles decorated multi-walled carbon nanotubes composites and a molecularly imprinted polymer (MIP), we propose a novel molecularly imprinted electrochemiluminescence (ECL) sensor to selectively determine isoniazid (INH). The MIP is synthesized through electrochemical copolymerization of acrylamide and N,N'-methylene diacrylamide in the presence of INH template molecules. The enhanced ECL intensity is linear in the range of 0.1 to 110 μg cm(-3) and the detection limit is 0.08 μg cm(-3) (3σ) INH with relative standard deviation 3.8% (n = 6) for 8 μg cm(-3). As a result, the sensor has been successfully applied to the determination of INH in human urine and pharmaceutical samples. Moreover, the possible ECL mechanism is discussed.  相似文献   

9.
A Monte Carlo algorithm has been established for multi-dispersive copolymerization system, based on the experimental data of copolymer molecular weight and dispersion via GPC measurement. The program simulates the insertion of every monomer unit and records the structure and microscopical sequence of every chain in various lengths. It has been applied successfully for the ring-opening copolymerization of 2,2-dimethyltrimethylene carbonate (DTC) with δ-caprolactone (δ-CL). The simulation coincides with the experimental results and provides microscopical data of triad fractions, lengths of homopolymer segments, etc., which are difficult to obtain by experiments. The algorithm presents also a uniform frame for copolymerization studies under other complicated mechanisms.  相似文献   

10.
梁恒 《色谱》2007,25(5):664-680
提出非线性-非理想-平衡色谱过程的局域Lagrangian(LLA)方法的矩阵形式。基于Lagrangian描述、局域平衡假设和热力学状态函数等基本物理原理,设计了局域热力学路径(LTP),采用LTP获得了完全热力学状态递推方程的矩阵形式。该递推方程具有Markov特性。对基于LTP的LLA方法的收敛性、相容性和稳定性进行了理论分析和数值实验,给出LLA的稳定性条件。以矢量形式表示了该LLA计算机程序,并模拟了空间分布、轴向扩散和进样量等因素对洗脱曲线的影响。在遍历空间中,建立了离散时间形式的溶质带演化轨线和离散时间控制矢量之间的对应关系。按Bellman动态规划思想,给出对于非线性-非理想-平衡色谱进行优化控制的多段决策问题的简明算法,以此可获得状态矢量和控制矢量的优化轨线。该LLA的矩阵形式消除了制备色谱理论和Markov决策过程或其他基于离散时间状态的现代控制方法之间的鸿沟。  相似文献   

11.
A series of tri‐components copolymers with different molar ratios were synthesized via bulk ring‐opening copolymerization of trimethylene carbonate (TMC), L ‐lactide (LLA), and ε‐caprolactone (ε‐CL), using stannous octoate as catalyst. The sequence structure of the tercopolymer chain was characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and gel permeation chromatography (GPC). The results showed that although block sequence of the corresponding monomers still existed in the tercopolymer chain, the random tercopolymers were ultimately obtained due to the transesterification during polymerization. For the samples TP1 and TP2, longer sequence of LLA existed in the molecular chains. The thermal properties of tercopolymers were investigated by differential scanning calorimetry (DSC) and the mechanical properties of the resulting copolymers were studied by using a tensile tester. The results indicated that the properties of these copolymers could be adjusted by changing the compositions of the copolymers. The resulting tercopolymers are expected to have potential uses as nerve regeneration and other biomedicine materials. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
A set of poly(L-lactide)-poly(?-caprolactone) diblock copolymers (AB) and poly(L-lactide)-poly(?-caprolactone)-poly(L-lactide) triblock copolymers (ABA) with predictable molecular weights and relatively narrow distributions were synthesized by ring-opening polymerization of successively added ?-caprolactone (?-CL) and L-lactide (LLA) using 4-methyl benzo-12-crown-4 imidazol-2-ylidene as catalyst. The effects of polymerization conditions, such as reaction time, temperature, monomer/catalyst molar ratio and monomer concentration on the copolymerization have been discussed in detail. The resulting copolymers were characterized by 1H-NMR, 13C-NMR, IR, GPC and DSC methods which confirmed the successful synthesis of block copolymers of LLA and ?-CL. Hydrolytic degradation of the polymers showed that the PLLA-PCL-PLLA copolymer exhibited faster degradation as compared with the PCL homopolymer in alkaline medium at 37°C.  相似文献   

13.
孙维林 《高分子科学》2011,29(3):390-396
The poly(2,2-dimethyltrimethylene carbonate)(PDTC)with one hydroxyl and one formate terminal functions was synthesized by in situ generated,tetrahydrosalen stabilized yttrium borohydride complex.The influences of monomer/initiator molar ratio,temperature and reaction time on polymerization of DTC were investigated.Under the condition:[DTC]/[I]=500,55℃,toluene:0.5 mL,DTC:0.6 g,PDTC with Mn=15600 and PDI=2.15 was obtained. Through 1H-NMR and 13C-NMR analyses,the structure of PDTC was characterized and a coordination-insertion mechanism was proposed.In addition,the random copolymerization of DTC and caprolactone(CL)initiated by rare-earth borohydride compound was studied.The microstructure of PDTC-co-PCL includes four diads:DTC-CL,CL-CL,DTC-DTC and CL-DTC, which were determined by the specific signals in 1H-NMR spectra.Based on the typical signals of the formate(δ= 8.08)and hydroxyl(δ=3.34)end groups of PDTC-co-PCL,a mechanism involving DTC monomer inserts before CL during the initiation process was presumed.Furthermore,the thermal properties of amorphous copolymer were characterized by differential scanning calorimetry(DSC).The results support the random structure of PDTC-co-PCL.  相似文献   

14.
This study investigates pyrolyzed photoresist film (PPF)-based carbon optically transparent electrodes (C-OTEs) for use in electrogenerated chemiluminescence (ECL) studies. Oxidative-reductive ECL is obtained with a well-characterized ECL system, C8S3 J-aggregates with 2-(dibutylamino)ethanol (DBAE) as coreactant. Simultaneous cyclic voltammograms (CVs) and ECL transients are obtained for three thicknesses of PPFs and compared to nontransparent glassy carbon (GC) and the conventional transparent electrode indium tin oxide (ITO) in both front face and transmission electrode cell geometries. Despite positive potential shifts in oxidation and ECL peaks, attributed to the internal resistance of the PPFs that result from their nanoscale thickness, the PPFs display similar ECL activity to GC, including the low oxidation potential (LOP) observed for amine coreactants on hydrophobic electrodes. Reductive-oxidative ECL was obtained using the well-studied ECL luminophore Ru(bpy)(3)(2+), where the C-OTEs outperformed ITO because of electrochemical instability of ITO at very negative potentials. The C-OTEs are promising electrodes for ECL applications because they yield higher ECL than ITO in both oxidative-reductive and reductive-oxidative ECL modes, are more stable in alkaline solutions, display a wide potential window of stability, and have tunable transparency for more efficient detection of ECL.  相似文献   

15.
用新戊二醇和三光气为原料,反应生成2,2-二甲基三亚甲基碳酸酯.再以四氢呋喃为溶剂,酶为催化剂引发聚2,2-二甲基三亚甲基碳酸酯(PDTC)与壳寡糖接枝生成接枝共聚物.研究了温度、时间、配比对接枝共聚物的产率和分子量的影响.就产率而言,最佳反应条件是60℃、-NH2/DTC的摩尔比值为1∶10、36 h、DTC/酶的质量比值为200;就重均分子量而言,最佳反应条件是60℃、-NH2/DTC摩尔比为1∶10、36 h、DTC/酶质量比值为150.对产品进行红外光谱、凝胶色谱与溶解性能测试.  相似文献   

16.
Electrogenerated chemiluminescence (ECL) of luminol on a gold-nanorod-modified gold electrode was studied, and five ECL peaks were obtained under conventional cyclic voltammetry in both neutral and alkaline solutions. Among them, four ECL peaks (ECL-1-4) were also observed on a gold-nanosphere-modified gold electrode, but the intensities of these ECL peaks were enhanced about 2-10-fold on a gold-nanorod-modified gold electrode in neutral solution. One new strong ECL peak (ECL-5) was obtained at -0.28 V (vs SCE) on a gold-nanorod-modified gold electrode in both neutral and alkaline solutions and enhanced with an increase in pH. In strong alkaline solutions, ECL-1 and ECL-2 on a gold-nanosphere-modified electrode were much stronger than those on a gold-nanorod-modified gold electrode, while ECL-3-5 appeared to only happen on a gold-nanorod-modified gold electrode. The emitter of all the ECL peaks was identified as 3-aminophthalate. The ECL peaks were found to depend on the scan direction, the electrolytes, the pH, and the presence of O(2) and N(2). The reaction pathways for ECL-4 have been further elucidated, and the mechanism of the new ECL peak (ECL-5) has been proposed. The results indicate that a gold-nanorod-modified gold electrode has a catalytic effect on luminol ECL different from that of a gold-nanosphere-modified gold electrode, revealing that the shape of the metal nanoparticles has an important effect on the luminol ECL behavior. The strong ECL of luminol in neutral solution obtained on a gold-nanorod-modified electrode may be used for the sensitive detection of biologically important compounds in physiological conditions.  相似文献   

17.
基于电化学聚合在金电极表面固定兔抗人免疫球蛋白G抗体与人免疫球蛋白G及标记有Ru(bpy)2+3 的羊抗人免疫球蛋白G抗体之间发生特异性免疫反应,形成三明治结构,成功建立了用于测定人血清中免疫球蛋白G的电化学发光(ECL)免疫技术.利用此方法测定人免疫球蛋白G含量,浓度在50 μg/L~2 mg/L范围内与电化学发光强度呈良好的线性关系,线性回归方程为y(a. u.)=48.41+0.09x(μg/L) (n=7);检出限为20 μg/L (3σ).测得正常人血清中免疫球蛋白G平均含量为11.2 g/L ,结果令人满意.  相似文献   

18.
This communication presents an instrumental development based on the printed circuit board (PCB) technology to integrate electrochemiluminescence (ECL) analysis in microfluidic systems. PCB gold macro- (10 mm2) and micro- (0.09 mm2) electrodes and two ECL microfluidic devices are designed, fabricated and tested via luminol ECL detection. Potential modulation is performed between 0.7 and 0 V vs. Ag/AgCl for luminol oxidation, thus giving rise to on/off ECL responses in the presence of hydrogen peroxide. Synchronous detection is adopted to allow weak ECL signal recovery at a very low signal-to-noise ratio (SNR). The detection limit obtained with the two ECL microfluidic devices is 50 nM and 100 nM H2O2 for macroelectrodes and microelectrodes, respectively.  相似文献   

19.
A series of L‐lactide (LLA), 1,3‐trimethylene carbonate (TMC) and glycolide (GA) terpolymers (LTG) of different monomer molar ratios were synthesized by using ring‐opening copolymerization. An effective and low‐toxic zirconium (IV) acetylacetonate Zr(Acac)4 was used as catalyst. The viscosity‐average molecular weights (Mη) of obtained polymers were all above 2.2×104 g/mol. The chemical structure and viscosity of terpolymers were confirmed by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1HNMR), 13C nuclear magnetic resonance (13CNMR) and an Ubbelohde viscometer. The thermal and mechanical properties were investigated by means of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X‐ray diffraction (XRD) and stress‐strain measurements. Results suggested that all terpolymers were amorphous and showed good thermal stability. Also it was found that elongation increased with the decreasing of LLA unit. More importantly, terpolymers displayed shape memory property when deformation temperatures were 14‐15 °C above Tg.  相似文献   

20.
A selective method was developed for the determination of disulfiram and two of its metabolites, diethyldithiocarbamate (DTC) and copper (II) diethyldithiocarbamate [Cu(DTC)2], in complex (biological) samples by reversed-phase liquid chromatography (RP-LC) with post-column derivatization. In the first step, DTC is converted into lead (II) diethyldithiocarbamate [Pb (DTC)2] by adding lead (II) acetate. Disulfiram, Pb (DTC)2 and Cu (DTC)2 can be easily pre-concentrated on C18-bonded silica. After separation by isocratic RP-LC, derivation takes place in two solid state post-column reactors packed with metallic copper and copper (II) phosphate. Disulfiram reacts with metallic copper to form Cu (DTC)2. The same product is obtained by the ligand-exchange reaction between Pb (DTC)2 and copper (II) phosphate. Cu (DTC)2 can be detected selectively at 435 nm with good sensitivity (molar absorptivity, epsilon = 13,000). The derivatization reactions proceed rapidly and quantitatively, which was confirmed by comparison of absorption spectra. The applicability of this method is demonstrated for undiluted urine samples which, apart from the addition of lead (II) acetate and pre-concentration of C18-bonded silica, require no clean-up procedure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号