首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction of OH with acetylene was studied in a discharge flow system at room temperature. OH was generated by the reaction of atomic hydrogen with NO2 and was monitored throughout the reaction using ESR spectroscopy. Mass-spectrometric analysis of the reaction products yielded the following results: (1) less than 3 molecules of OH were consumed, and less than 2 molecules of H2O were formed for every molecule of acetylene that reacted; (2) CO was identified as the major carbon-containing product; (3) NO, formed in the generation of OH, reacted with a reaction intermediate to give among other products N2O. These observations placed severe limitations on the choice of a reaction mechanism. A mechanism containing the reaction OH + C2H2 → HC2O + H2 better accounted for the experimental results than one involving the abstraction reaction OH + C2H2 → C2H + H2O. The rate constant for the initial reaction was measured as 1.9 ± 0.6 × 10?13 cm3 molecule?1 sec?1.  相似文献   

2.
A new reforming process was studied using Ni/SiO2 with a hydrogen-permeating membrane reactor. Nickel catalyst supported on SiO2 is highly active for CH4?H2O?O2 reaction in membrane reactor and the reaction close to CH4+0.35O2+1.3H2O→CO2+3.3H2 proceeds at 873 K. Since the selectivity to carbon and CO2 increased and decreased with decreasing contact time respectively, it is considered that the reaction was started by decomposition of CH4 followed by oxidation of C and water shift reaction. Therefore, the reaction mechanism was different from so-called autothermal reforming (ATR) reaction.  相似文献   

3.
A new reforming process was studied using Ni/SiO2 with a hydrogen-permeating membrane reactor. Nickel catalyst supported on SiO2 is highly active for CH4-H2O-O2 reaction in membrane reactor and the reaction close to CH4 + 0.35O2 + 1.3H2O → CO2 + 3.3H2 proceeds at 873 K. Since the selectivity to carbon and CO2 increased and decreased with decreasing contact time respectively, it is considered that the reaction was started by decomposition of CH4 followed by oxidation of C and water shift reaction. Therefore, the reaction mechanism was different from so-called autothermal reforming (ATR) reaction.  相似文献   

4.
MNDO molecular orbital calculations have been employed to investigate limited reaction pathways and potential energy surfaces for a series of SN2 reactions. Model calculations for X? + CH3X (X = H, F, OH, OCH3, and CN) indicate that the MNDO method gives qualitative agreement with ab initio studies except for the hydride–CH4 exchange. Studies involving alkylation of pyridine (Menschutkin reaction) were also carried out. For the reaction of pyridine with CH3Cl, which involves charge separation, our MNDO studies (which do not include solvation effects) do not produce a characteristic SN2 pathway. For the reaction of pyridine with trimethyloxonium cation [(CH3)3O+] as the alkylating agent, a well defined SN2 reaction pathway was obtained; this reaction involves charge transfer. A potential energy surface for the pyridine–trimethyloxonium cation reaction shows the presence of a saddle point transition state that resembles starting materials, in agreement with the Hammond postulate for this exothermic reaction.  相似文献   

5.
Reaction of Adipic Acid Diamide with Phosphorus Pentachloride The reaction of adipamide (I) with phosphorus pentachloride in a solvent leads to (Cl3P?NCCl2CCl2CH2)2 (II). The stages of the reaction are: 1. chlorination of the keto and methylen groups 2. formation of the ? N?PCl3 group. This result is a supplement of the existing conception about the course of the reaction of carboxylic acid amides with phosphorus pentachloride. The reaction of (I) with PCl5 without any solvent has been reproduced and the course of reaction has also been investigated. This reaction gives mainly NC(CH2)4CN. The resulting product of a careful hydrolysis of (II) is (Cl2OPN?CClCl2CH2)2. A total hydrolysis gives back (I).  相似文献   

6.
The dark reaction of NOx and H2O vapor in 1 atm of air was studied for the purpose of elucidating the recently discussed unknown radical source in smog chambers. Nitrous acid and nitric oxide were found to be formed by the reaction of NO2 and H2O in an evacuable and bakable smog chamber. No nitric acid was observed in the gas phase. The reaction is not stoichiometric and is thought to be a heterogeneous wall reaction. The reaction rate is first order with respect to NO2 and H2O, and the concentrations of HONO and NO initially increase linearly with time. The same reaction proceeds with a different rate constant in a quartz cell, and the reaction of NO2 and H218O gave H18ONO exclusively. Taking into consideration the heterogeneous reaction of NO2 and H2O, the upper limit of the rate constant of the third-order reaction NO + NO2 + H2O → 2HONO was deduced to be (3.0 ± 1.4) × 10?10 ppm?2-min?1, which is one order of magnitude smaller than the previously reported value. Nitrous acid formed by the heterogeneous dark reaction of NO2 and H2O should contribute significantly to both an initially present HONO and a continuous supply of OH radicals by photolysis in smog chamber experiments.  相似文献   

7.
The bimolecular single collision reaction potential energy surface of CN radical with ketene (CH2CO) was investigated by means of B3LYP and QCISD(T) methods. The calculated results indicate that there are three possible channels in the reaction. The first is an attack reaction by the carbon atom of CN at the carbon atom of the methylene of CH2CO to form the intermediate NCCH2CO followed by a rupture reaction of the C-C bond combined with -CO group to the products CH2CN CO. The second is a direct addition reaction between CN and CH2CO to form the intermediate CH2C(O)CN followed by its isomerization into NCCH2CO via a CN-shift reaction, and subsequently, NCCH2CO dissociates into CH2CN CO through a CO-loss reaction. The last is a direct hydrogen abstraction reaction of CH2CO by CN radical. Because of the existence of a 15.44 kJ/mol reaction barrier and higher energy of reaction products, the path can be ruled out as an important channel in the reaction kinetics. The present theoretical computation results, which give an available suggestion on the reaction mechanism, are in good agreement with previous experimental studies.  相似文献   

8.
Synthesis of [60]fullerene (C60)-functionalized rotaxanes via Diels-Alder reactions with C60 is described. Diels-Alder reaction of C60 and sulfolene moiety as masked diene attached on the wheels of rotaxanes results in high yields of C60 incorporation. Rotaxanes are prepared by tin-catalyzed urethane-forming end-capping reaction with isocyanate of pseudorotaxane having the wheel carrying C60 functionality as introduced by the Diels-Alder reaction. The Diels-Alder reaction was accomplished as end-capping reaction between C60 and pseudorotaxane bearing sultine moiety as masked diene on the axle terminal. A variety of C60-containing [2]rotaxanes was prepared in moderate to good yields by these Diels-Alder protocols.  相似文献   

9.
The reaction of alkyl aryl N-p-tosylsulphilimines with thiophenolate ion was found to afford quantitatively the sulphide that arises by an SN2 like reaction on the carbon atom adjacent to the tri-valent sulphur atom. This reaction was also found to proceed smoothly with such compounds as sulphoxides and sulphones and sulphoxmanes. The kinetic study on the reaction between aryl methyl N-p-tosylsulphilimine with thiophenolate ion in DMF reveals that the reaction is of second order, namely, first order with respect to each thiophenolate ion and the sulphilimine. The enthalpy and entropy of activation for the reaction are ΔH = ?17· kcal/mol and ΔS = ?5·7 eu respectively. The effect of substituents in the reaction, p-XC6H4+(?SO2C6H4Y-p)CH3 + p-ZC6H4SK is nicely correl with Hammett σ values giving ?x = + 2·4, ?y = + 1·2 and ?z = ?1·8 respectively. Meanwhile, a marked steric retardation by a bulky alkyl group in alkyl phenyl N-p-tosylsulphilimine is observed. Furthermore, from the stereochemical study of the reaction using an optically active sec-octyl phenyl N-p-tosylsulphilimine with thiophenolate ion it is concluded that the reaction proceeds via a typical SN2 process on α-carbon atom attached to the tri-valent sulphur atom.  相似文献   

10.
The reaction of CuSO4 with Cu2SO2 to give Cu2SO4 was studied. The influence of the degree of reaction, the initial mixture composition and the temperature upon the reaction rate and the product composition was discussed. It was found that the reaction starts above 710 K and pure Cu2SO4 can be obtained under strictly defined conditions.  相似文献   

11.
The mechanisms of reactions between CC13OO? radical and quercetin, rutin and epigallocatechin gallate (EGCG) have been studied using pulse radiolytic technique. It is suggested that the electron transfer reaction is the main reaction between CC13OO? radical and rutin, EGCG, but there are two main pathways for the reaction of CC13OO? radical with quercetin, one is the electron transfer reaction, the other is addition reaction. The reaction rate constants were determined. It is proved that quercetin and rutin are better CC13OO? radical scavengers than EGCG.  相似文献   

12.
Abstract

Kinetic studies illuminate details of the reaction of photoproduced CpFe(CO)(η3-CH2C6H5) with two electron Lewis bases. Rate constants of 151(10)M?1s?1 for CO back reaction and between 440 and 3200 M?1s?1 for reaction with various phosphine nucleophiles were recorded. Linear free energy analysis quantifies the stereoelectronic effect of the nucleophile. Variation of the para-substituent on the benzyl group demonstrates that an electron rich benzyl group impedes reaction. The effect of ancillary ligands was seen by substitution of C5Me5 for C5H5. The large, electron rich C5Me5 speeds up CO substitution but slows down PPh3 substitution. Mechanistic clues were obtained from Eyring plots for reaction of CpFe(CO)(η3-CH2C6H5) with 4 different phosphines. Examination of the measured enthalpy and entropy barriers suggests a stepwise reaction mechanism.  相似文献   

13.
苏浩  杨春 《催化学报》2014,35(7):1224-1234
以Keggin结构的磷钨酸和三乙胺(TEA)为原料,通过简单的酸碱反应合成了磷钨酸的TEA盐.并以它们为催化剂,考察了以H2O2为氧化剂、以水为溶剂的体系中苯甲醇选择氧化制备苯甲醛的反应性能.结果表明,(TEAH)nH3-nPW12O40(n=1,2,3)系列催化剂对苯甲醇的选择氧化反应有很高的活性和选择性,且可被分离和循环使用.在适宜的反应条件下,最佳催化剂(TEAH)H2PW12O40上,苯甲醇的转化率可达99.6%,苯甲醛的选择性为100%.还采用IR,31PNMR谱和元素分析技术,对催化剂和反应过程中催化剂物种的转化和分布进行了考察,进而导出了反应机理.在这个水--油两相反应中,(PW12O403-首先在H2O2的作用下,氧化降解为溶于水的小分子过氧物种(PO4(WO(O2243-和自由W物种.(PO4(WO(O2243-是真正的活性物种,可将部份溶于水层的苯甲醇氧化为苯甲醛,自身转变为失去活性氧的反应后物种(SAR).而SAR又可与自由W物种一起聚合为前驱体状态的(PW12O403-,完成催化循环.  相似文献   

14.
The reaction mechanism of the Y+ cation with CH3CHO has been investigated with a DFT approach. All the stationary points are determined at the UB3LYP/ECP/6-311++G** level of the theory. Both ground and excited state potential energy surfaces are investigated in detail. The present results show that the title reaction start with the formation of a CH3CHO-metal complex followed by C-C, aldehyde C-H, methyl C-H and C-O activation. These reactions can lead to four different products (Y+CH4 + CO, Y+CO + CH4, Y+COCH2 + H2 and Y+O + C2H4). The minimum energy reaction path is found to involve the spin inversion in the different reaction steps, this potential energy curve-crossing dramatically affects reaction exothermic. The present results may be helpful in understanding the mechanism of the title reaction and further experimental investigation of the reaction.  相似文献   

15.
A New Contribution to the Phosphazo Reaction The reaction of acrylonitrile with phosphorus pentachloride gives ClCH2CCl2CCl2NPCl3 (I) and a hexachlorophosphate with the composition C3H2Cl14NP3 (II). For the first time the structure of (II) has been exactly determined by using 1H- and 31P-NMR-spectra. The course of reaction was studied in detail. 3-chloropropionitrile has been found as the product of a secondary reaction. The reaction of butyramide with PCl5 has also been investigated, and was found to be analogous.  相似文献   

16.
Reaction of the stable digermyne BbtGeGeBbt (Bbt = 2,6-[CH(SiMe3)2]2-4-[C(SiMe3)3]-C6H2) with ethylene initially afforded the corresponding 1,2-digermacyclobutene. Depending on the reaction conditions applied, further reaction of this 1,2-digermacyclobutene with ethylene furnished two different reaction products: a 1,4-digermabicyclo[2.2.0]hexane or a bis(germiranyl)ethane. Combined experimental and theoretical results suggested that the 1,4-digermabicyclo[2.2.0]hexane and the bis(germiranyl)ethane are the thermodynamic and kinetic reaction products, respectively. A reaction mechanism in agreement with these results was proposed.  相似文献   

17.
在aug-cc-pVTZ基组下采用CCSD(T)和B3LYP方法,研究了H2O2+Cl反应,并考虑在大气中单个水分子对该反应的影响.结果表明,H2O2+Cl反应只存在一条生成产物为HO2+HCl的通道,其表观活化能为10.21kJ·mol-1.加入一分子水后,H2O2+Cl反应的产物并没有发生改变,但是所得势能面却比裸反应复杂得多,经历了RW1、RW2和RW3三条通道.水分子在通道RW1和RW2中对产物生成能垒的降低起显著的负催化作用,而在通道RW3中则起明显的正催化作用.利用经典过渡态理论(TST)并结合Wigner矫正模型计算了216.7-298.2 K温度范围内标题反应的速率常数.结果显示,298.2 K时通道R1的速率常数为1.60×10-13cm3·molecule-1·s-1,与所测实验值非常接近.此外,尽管通道RW3的速率常数kRW3比对应裸反应的速率常数kR1大了46.6-131倍,但该通道的有效速率常数k'RW3却比kR1小了10-14个数量级,表明在实际大气环境中水分子对H2O2+Cl反应几乎没有影响.  相似文献   

18.
The product composition and reaction kinetics are reported for 2,3,6-trimethylphenol (TMP) oxidation with hydrogen peroxide in acetonitrile catalyzed by a Ti-monosubstituted polyoxometalate (Ti-POM) with a Keggin structure ([Bu4N]4[PTi(OMe)W11O39]) and for the stoichiometric reaction between TMP and the peroxo complex [Bu4N]4[HPTi(O)2W11O39] (I). The main products of the stoichiometric reaction are 2,3,5-trimethyl-1,4-benzoquinone (TMBQ) and 2,2′,3,3′,6,6′-hexamethyl-4,4′-biphenol (BP). The TMBQ yield increases as the TMP/I molar ratio is decreased. The catalytic reaction is first-order with respect to H2O2 and the catalyst and has a variable order (1-0) with respect to TMP. The rate of the reaction increases as the water concentration in the reaction mixture is raised. The stoichiometric reaction is first-order with respect to peroxo complex I and has a variable order (1-0) with respect to TMP. There is no kinetic isotope effect for this reaction (k ArOH/k ArOD = 1). A TMP oxidation mechanism is suggested, which includes the coordination of a TMP molecule and peroxide on a Ti site of the catalyst with the formation of a reactive intermediate. The one-electron oxidation of TMP in this intermediate yields a phenoxyl radical. The subsequent conversions of these ArO° radicals yield the reaction products.  相似文献   

19.
The insertion and abstraction reaction mechanisms of singlet and triplet CCl2 with CH3MH (M=O, S) have been studied by using the DFT, NBO and AIM methods. The geometries of reactions, the transition state and products were completely optimized by B3LYP/6–311G(d, p). All the energy of the species was obtained at the CCSD(T)/6–311G(d, p) level. The calculated results indicated that the major pathways of the reaction were obtained on the singlet potential energy surface. The singlet CCl2 can not only trigger the insertion reaction with C-H and M-H in four pathways, by which the products P1 [CH3OCHCl2, reaction I(1)], P3[Cl2HCCH2OH, reaction I(2)], P5[CH3SCHCl2, reaction II(1)] and P7[Cl2HCCH2SH, reaction II(2)] are produced respectively, but also abstract M-H, resulting P4 [CH2O+CH2Cl2, reaction I(3)] and P8[CH2S+CH2Cl2, reaction II(3)]. In addition, the important geometries in domain pathways have been studied by AIM and NBO theories. Supported by the National Natural Science Foundation of China (Grant No. 20335030) and Foundation of Education Committee of Gansu Province (Grant No. 0708-11)  相似文献   

20.
The reactions of dialkylaluminium acetylacetonates, R2Al(acac),(where R = CH3, C2H5 and i-C4H9; I–III) with Lewis bases Et2O, THF, Py, 2,6-dimethylpyridine (DMP), DSMO and HMPT, have been studied. The reaction was found to proceed according to the equation:
With strong bases (B) the reaction is shifted completely to the right, with bases of moderate strength an equilibrium is established and with weak bases the reaction is shifted completely to the left. The reaction rate constant k1 depends on R and increases in the order i-C4H9 < C2H5 < CH3. The reaction starts from the formation of the complex R2Al(acac)-B (consisting of a five-coordinated aluminium atom) and its further dissociation. The reaction mechanism is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号