首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Poly(2,6-diphenyl-1,4-phenylene ether) reacts with phenols in the presence of an initiator to form a mixture of low molecular weight hydroxyarylene ethers. Although the reaction is similar to the equilibration of poly(2,6-dimethyl-1,4-phenylene ether) with phenols, higher reaction temperatures and larger initiator concentrations are required. Compounds as 3,3′,5,5′-tetraphenyl-4,4′-diphenoquinone, tert-butyl perbenzoate, and benzoyl peroxide are active initiators. The structure of the polymer affects the extent to which the polymer equilibrates.  相似文献   

2.
Aromatic polyelectrolytes based on sulfonated poly(benzobisthiazoles) (PBTs) have been synthesized by a polycondensation reaction of sulfo-containing aromatic dicarboxylic acids with 2,5-diamino-1,4-benzenedithiol dihydrochloride (DABDT) in freshly prepared polyphosphoric acid (PPA). Several sulfonated PBTs, poly[(benzo[1,2-d:4,5-d′]bisthiazole-2,6-diyl)-2-sulfo-1,4-phenylene] sodium salt (p-sulfo PBT), poly[(benzo[1,2-d:4,5-d′]bisthiazole-2,6-diyl)-5-sulfo-1,3-phenylene] sodium salt (m-sulfo PBT), their copolymers, and poly[(benzo[1,2-d:4,5-d′]bisthiazole-2,6-diyl)-4,6-disulfo-1,3-phenylene] potassium salt (m-disulfo PBT), have been targeted and the polymers obtained characterized by 13C-NMR, FT-IR, elemental analysis, thermal analysis, and solution viscosity measurements. Structural analyses confirm the structures of p-sulfo PBT and m-disulfo PBT, but suggest that the sulfonate is cleaved from the chain during synthesis of m-sulfo PBT. m-Disulfo PBT dissolves in water as well as strong acids, while p-sulfo PBT dissolves well in strong acids, certain solvent mixtures containing strong acids, and hot DMSO. TGA indicates that these sulfonated PBTs are thermally stable to over 500°C. Free-standing films of p-sulfo PBT, cast from dilute neutral DMSO solutions, are transparent, tough, and orange in color. Films cast from basic DMSO are also free standing, while being opaque and yellow-green. p-Sulfo PBT was incorporated as the dopant ion in polypyrrole, producing conductive films with conductivities as high as 3 S/cm and electrical anisotropies as high as 10. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
A series of new AB-type poly(etherimide)s having bisphenol-type moiety was prepared by the one-pot polyimidization using triphenylphosphite(TPP) in N-methyl-2-pyrrolidone(NMP)/pyridine solution at 150°C. Complete cyclodehydration was observed in the polymerizations as well as in model reactions. Polymers were obtained with inherent viscosities in the 0.27–0.49 dL/g range. The Mn and Mw/Mn of poly[4-(1,4-phenyleneoxy-1,4-phenylenehexafluoro-isopropylidene-1,4-phenylene)oxyphthalimide] (4d) with ηinh = 0.49 dL/g were 73,400 g/mol and 1.5, respectively. Most polymers could readily be dissolved in common organic solvents such as DMAc, NMP, and m-cresol. The polymer 4d was soluble even in chloroform. These polymers had glass transition temperatures between 205 and 235°C, and 5% weight loss temperatures in the range of 511–532°C in nitrogen. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3530–3536, 1999  相似文献   

4.
Poly[oxy-2,2′-diphenyleneoxyisophthaloyl-b-oxy(2-methyl-1,3-phenylene)oxyterephthaloyl] I, poly[oxy-2,2′-diphenyleneoxyterephthaloyl-b-oxy(2-methyl-1,3-phenylene)oxyterephthaloyl] II, poly(oxy-2,2′-diphenyleneoxyisophthaloyl-b-oxy-2,2′-diphenyleneoxyterephthaloyl) III, poly[oxy-2,2′-diphenyleneoxyterephthaloyl-b-oxy(2-methyl-1,4-phenylene)oxyterephthaloyl] IV, poly[oxy2,2′-diphenyleneoxyterephthaloyl-b-oxy(2-chloro-1,4-phenylene)oxyterephthaloyl] V, poly[oxy-2,2′-diphenyleneoxyterephthaloyl-co-oxy(2-chloro-1,4-phenylene)oxyterephthaloyl] VI, and poly[oxy-2,2′-diphenyleneoxyterephthaloyl-co-oxy(2-methyl-1,4-phenylene)oxyterephthaloyl] VII have been synthesized and characterized. Random copolyester VI appears to form a birefringent fluid phase above the melting temperature.  相似文献   

5.
Poly[N,N′-(sulfo-phenylene)phthalamid]es and poly[N,N′-(sulfo-p-phenylene)pyromellitimide] were prepared in water-soluble form and were found to have unique solution properties, similar in some respects to xanthan. The polymer most investigated, poly[N,N′-(sulfo-p-phenylene)terephthalamide] (PPT-S), is produced as the dimethylacetamide (DMAC) salt by the solution polymerization of 2,5-diaminobenzenesulfonic acid with terephthaloyl chloride in DMAC containing LiCl. The isolated polymer requires heating in water to dissolve; the resulting cooled solutions are viscous or gels at concentrations as low as 0.4%. They are highly birefringent, exhibit circular dichroism properties, and are viscosity-sensitive to salt. Solutions of this polymer mixed with those of guar or hydroxyethyl cellulose give significantly enhanced viscosity. The polymer is relatively low molecular weight, ca. 5000 estimated from viscosity data. Some meta and para isomeric analogs of PPT-S were prepared; these polymers have similar properties except they are more soluble in water, and higher concentrations are required to obtain significant viscosity. Poly[N,N′-(sulfo-p-phenylene) pyromellitimide] (PIM-S) was prepared similarly from 2,5-diaminobenzenesulfonic acid and pyromellitic dianhydride. Its aqueous solution properties are similar to those of PPT-S. It appears that these relatively low-molecular-weight rigid-chain polymers associate in water to form a network that results in viscous solutions at low concentrations.  相似文献   

6.
Novel poly(enonsulfides) were prepared with inherent viscosities as high as 1.35 dL/g by nucleophilic addition of various aromatic dithiols to 1,1′-(1,3- or 1,4-phenylene)bis(3-phenyl-2-propyn-1-one) in m-cresol at 25–40°C. A tough clear yellow film with a tensile strength of 11,300 psi and a tensile modulus of 466,000 psi at 25°C was cast from a chloroform solution of the polymer prepared from 1,3-dithiobenzene and 1,1′-(1,4-phenylene)bis(3-phenyl-2-propyn-1-one). The poly(enonsulfides) exhibited Tg's as high as 180°C and weight losses of approximately 10% at 331°C in air. The synthesis and characterization of several poly(enonsulfides) are discussed.  相似文献   

7.
2,3,4,5,6-Pentafluoroformanilide was prepared giving, in addition, two new compounds 4,5,6,7-tetrafluoro-1-pentafluorophenyl-benzimidazole and 2,3,4,5-tetrafluoro-6-[(pentafluorophenyl)amino]formanilide. Sodium 2,3,4,5,6-pentafluoro-formanilide was reacted with hexafluorobenzene in a molar ratio of 1:4 to give oligomers of α-pentafluorophenyl-ω-fluoro-poly(imino-tetrafluoro-1,4-phenylene). Some of the oligomers were isolated. The results indicate that poly(imino-tetrafluoro-1,4-phenylene) could be formed. Model reaction on hexafluorobenzene with sodium acetanilide, molar ratio 1:2, gave a low yield of N,N′-diacetyl-diphenyl-tetrafluoro-1,4-phenylenediamine.  相似文献   

8.
Sodium salts of water‐soluble polymers poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(hexyloxy)‐1,4‐phenylene]} ( P1 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dodecyloxy)‐1,4‐phenylene]} ( P2 ), poly{[2,5‐bis(3‐sulfonatopropoxy)‐1,4‐phenylene]‐alt‐[2,5‐bis(dibenzyloxy)‐1,4‐phenylene]} ( P3 ), poly[2‐hexyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P4 ), and poly[2‐dodecyloxy‐5‐(3‐sulfonatopropoxy)‐1,4‐phenylene] ( P5 )] were synthesized with Suzuki coupling reactions and fully characterized. The first group of polymers ( P1 – P3 ) with symmetric structures gave lower absorption maxima [maximum absorption wavelength (λmax) = 296–305 nm] and emission maxima [maximum emission wavelength (λem) = 361–398 nm] than asymmetric polymers P4 (λmax = 329 nm, λem = 399 nm) and P5 (λmax = 335 nm, λem = 401 nm). The aggregation properties of polymers P1 – P5 in different solvent mixtures were investigated, and their influence on the optical properties was examined in detail. Dynamic light scattering studies of the aggregation behavior of polymer P1 in solvents indicated the presence of aggregated species of various sizes ranging from 80 to 800 nm. The presence of alkoxy groups and 3‐sulfonatopropoxy groups on adjacent phenylene rings along the polymer backbone of the first set hindered the optimization of nonpolar interactions. The alkyl chain crystallization on one side of the polymer chain and the polar interactions on the other side allowed the polymers ( P4 and P5 ) to form a lamellar structure in the polymer lattice. Significant quenching of the polymer fluorescence upon the addition of positively charged viologen derivatives or cytochrome‐C was also observed. The quenching effect on the polymer fluorescence confirmed that the newly synthesized polymers could be used in the fabrication of biological and chemical sensors. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3763–3777, 2006  相似文献   

9.
Thin, homogeneous films of a high electron affinity (n-dopable) polymer, poly(3,4-dicyanothiophene) (PDCTh), were prepared by in-situ thermal polymerization of 2,5-diiodo-3,4-dicyanothiophene on substrates. As a result of the presence of two cyano substituents on the thiophene backbone, PDCTh is an electronegative polymer, with the LUMO at ca. 3.6 eV and the HOMO at ca. 6.7 eV. We demonstrate the fabrication of polymer-polymer rectifying heterojunctions using PDCTh and poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) polymer layers on ITO-glass. Rectification ratios in the current voltage characteristics of these devices exceed 10.3 This device exhibits a photovoltaic effect with a dc sensitivity at -3 V reverse bias of 4 × 10-4 A/W or quantum yield of 0.1% electrons/photon. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3115–3120, 1998  相似文献   

10.
The effects of incorporating a p-phenylene- (or m-phenylene)-1,3,4-oxadiazole fragment into the backbone of poly[1,4-phenylene(diphenylsilyl)-1,4-phenylene-2,5-(1,3,4-oxadiazole)], which was developed by the authors, was investigated. Bis[(p-carbohydrazidophenyl)]diphenylsilane was copolymerized with dipentachlorophenyl terephthalate or isophthalate to produce the prepolymers poly[N-(p-diphenylsilylbenzoyl)-NN″-(terephthaloyl)-N″′-(p-benzoyl)dihydrazide] and poly[N-(p-diphenylsilylbenzoyl)-N′,-N″-(isophthaloyl)-N″′-p-(benzoyl) dihydrazide], respectively. The polyhydrazides were converted by thermal dehydration into poly[1,4-phenylene(diphenylsilyl)-1,4-phenylene-(1,3,4-oxadiazole-2,5-diyl)-1,4-phenylene-2,5-(1,3,4-oxadiazole)] and poly[1,4-phenyl-ene(diphenylsilyl)-1,4-phenylene-(1,3,4-oxadiazole-2,5-diyl)-1,3,4-(oxadiazole)]. The new polymers were soluble in organic solvents. Films cast from these solutions exhibited good adhesion to glass and metal surfaces. Thermal analysis showed that the heat stability of all these polymers was about the same and that they were resistant to decomposition when heated in air to about 400°C. The results also indicated that these polymers were somewhat less heat-resistant than samples of poly-[1,4-phenylene(diphenylsilyl)-1,4-phenylene-2,5-]1,3,4-(oxadiazole) synthesized from bis(p-carbohydrazidophenyl)diphenylsilane and bis-(p-carbopentachlorophenoxy-phenyl)diphenylsilane.  相似文献   

11.
On the basis of the Ru-catalyzed regiospecific direct double arylation of benzene rings possessing 3-methylpyridin-2-yl substituents to produce 1-aryl-2-(3-methylpyridin-2-yl)benzene derivatives, the synthesis of poly(p-phenylene) derivatives having 2,5-bis(3-methylpyridin-2-yl) substituents is described. The reaction of 1,4-bis(3-methylpyridin-2-yl)benzene with bromobenzene (2 equiv) was carried out in the presence of [RuCl26-C6H6)]2 (5 mol %) in 1-methyl-2-pyrrolidone at 120°C for 24 h to produce 1,4-bis(3-methylpyridin-2-yl)-2,5-diphenylbenzene in 99% yield as a sole product. Neither 2,6-diphenylated nor further phenylated products was produced under the examined conditions. This regiospecific double arylation process was then applied to the synthesis of π-conjugated polymers by use of aryl dibromides such as 1,4-dibromobenzene, 2,7-dibromo-9,9-dihexylfluorene, and 2,5-dibromothiophene. For example, a polymer was obtained in 73% yield by using 1,4-dibromobenzene, whose Mn and Mw/Mn were estimated to be 3300 and 1.51, respectively. The bathochromic shift of the ultraviolet (UV)–visible absorption spectrum with respect to that of the model compound, 1,4-bis(3-methylpyridin-2-yl)-2,5-diphenylbenzene, indicated the extension of the π-conjugation. The blue fluorescence was also observed for the polymer upon the UV irradiation. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 2771–2777  相似文献   

12.
Two sulfonyl group-containing bis(ether anhydride)s, 4,4′-[sulfonylbis(1,4-phenylene)dioxy]diphthalic anhydride ( IV ) and 4,4′-[sulfonylbis(2,6-dimethyl-1,4-phenylene)dioxy]diphthalic anhydride (Me- IV ), were prepared in three steps starting from the nucleophilic nitrodisplacement reaction of the bisphenolate ions of 4,4′-sulfonyldiphenol and 4,4′-sulfonylbis(2,6-dimethylphenol) with 4-nitrophthalonitrile in N,N-dimethylformamide (DMF). High-molar-mass aromatic poly(ether sulfone imide)s were synthesized via a conventional two-stage procedure from the bis(ether anhydride)s and various aromatic diamines. The inherent viscosities of the intermediate poly(ether sulfone amic acid)s were in the ranges of 0.30–0.47 dL/g for those from IV and 0.64–1.34 dL/g for those from Me- IV. After thermal imidization, the resulting two series of poly(ether sulfone imide)s had inherent viscosities of 0.25–0.49 and 0.39–1.19 dL/g, respectively. Most of the polyimides showed distinct glass transitions on their differential scanning calorimetry (DSC) curves, and their glass transition temperatures (Tg) were recorded between 223–253 and 252–288°C, respectively. The results of thermogravimetry (TG) revealed that all the poly(ether sulfone imide)s showed no significant weight loss before 400°C. The methyl-substituted polymers showed higher Tg's but lower initial decomposition temperatures and less solubility compared to the corresponding unsubstituted polymers. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1649–1656, 1998  相似文献   

13.
Polymerization of p-(dimethylsilyl)phenylacetylene in toluene at 25 and 80 °C with RhI(PPh3)3 catalyst afforded highly regio- and stereoregular poly(dimethylsilylene-1,4-phenylenevinylene)s [cis- and trans-poly( 1a )s] containing 98% cis- and 99% trans-vinylene moieties, respectively. The trans-type polymers exhibited redshifts and hyperchromic effects in the ultraviolet–visible spectrum as compared with the cis-type counterparts. Photoirradiation of cis- and trans-poly( 1a )s gave cis-rich mixtures at equilibrium states. The trans and cis polymers exhibited different emission properties, for example—trans polymer, emissn λmax = 400 nm, quantum yield: 3.4 × 10−3 and cis polymer, emissn λmax = 380 nm, quantum yield: 1.5 × 10−3. Besides poly( 1a ), poly(dimethylsilylenearylenevinylene)s containing biphenylene and phenylenesilylenephenylene units [poly( 3 )] were prepared. The extent of conjugation in these polymers decreased in the orders of biphenylene > phenylene > phenylenesilylenephenylene as well as trans-vinylene > cis-vinylene. The quantum yield of the trans-rich polymer with biphenylene moiety was fairly large and 0.15. Polyaddition of 1,4-bis(dimethylsilyl)benzene and three types of diethynylarenes (4,4′-diethynylbiphenyl, 2,7-diethynylfluorene, and 2,6-diethynylnaphthalene) catalyzed by RhI(PPh3)3 provided novel regio- and stereoregular polymers [poly( 6 )]. These polymers displayed blue light emission with high quantum yields (4–81%). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3615–3624, 2003  相似文献   

14.
Three samples of poly{2,2′-[N,N′-bis(1,4-phenylene)benzophenone-3,3′,4,4′-tetracarboxylimide-6,6′-bis(3-phenyl-quinoxaline)]} (PPIQ), were prepared, differing in molecular weights and polymer chain endings. Their thermal degradation in vacuo and in air was determined by isothermal weight loss measurements. As in the case of poly-[2,2′-(1,4-phenylene)-6,6′-bis(3-phenylquinoxaline)] (PPQ), the temperature coefficients of thermal degradation in air were independent of molecular weight. However, in contrast, the temperature coefficients were independent of the type of polymer endgroups. It is, therefore, concluded that, contrary to amino-terminated PPQ's, polymer chain-end unzipping of PPIQ is of minor importance during thermal-oxidative degradation.  相似文献   

15.
Changes in the backbone structure of several meta derivatives of polyphenylene sulfide upon doping with AsF5 have been investigated by IR spectroscopy. Poly(m-phenylene sulfide) does not form a conducting complex with AsF5 unless reacted under conditions where carbon-carbon bonds form intramolecularly between phenyl rings. This assertion has been verified by comparison of the IR spectra of poly(m-phenylene sulfide) and a newly synthesized derivative, poly(thio-3,7-dibenzothiophendiyl), after doping with AsF5. This new derivative forms a complex with AsF5 which exhibits a conductivity of 18.5 S/cm. A sulfone-containing derivative has also been synthesized, poly[thio-3,7-(dibenzothiophene-5,5-dioxide)-diyl]. With this polymer, a much lower conductivity, 10?3 S/cm, was obtained after exposure to AsF5.  相似文献   

16.
Two flexible dicarboxylic acid monomers, 4,4′-[isopropylidenebis(1,4-phenylene)dioxy]dibenzoic acid ( 1 ) and 4,4′-[hexafluoroisopropylidenebis(1,4-phenylene)-dioxy]dibenzoic acid ( 3 ), were synthesized from readily available compounds in two steps in high yields. High molecular-weight polyhydrazides and poly(amide-hydra-zide)s were directly prepared from dicarboxylic acids 1 and 3 with terephthalic dihydrazide ( 5 ), isophthalic dihydrazide ( 6 ), and p-aminobenzhydrazide ( 7 ) by the phosphorylation reaction by means of diphenyl phosphite (DPP) and pyridine in N-methyl-2-pyrrolidone (NMP)/LiCl, or prepared from the diacyl chlorides of 1 and 3 with the hydrazide monomers 5–7 by the low-temperature solution polycondensation in NMP/LiCl. Less favorable results were obtained when using triphenyl phosphite (TPP) instead of DPP in the direct polycondensation reactions. Except for those derived from terephthalic dihydrazide, the resulting polyhydrazides and poly(amide-hydrazide)s could be cast into colorless, flexible, and tough films with good tensile strengths. All the hydrazide polymers and copolymers are amorphous in nature and are readily soluble in various polar solvents such as NMP and dimethyl sulfoxide (DMSO). Their Tgs were recorded in the range of 162–198°C and could be thermally cyclodehydrated into the corresponding polyoxadiazoles and poly(amide-oxadiazole)s approximately in the region of 300–380°C, as evidenced by the DSC thermograms. The oxadiazole polymers and copolymers showed a dramatically decreased solubility and higher Tg when compared to their respective hydrazide prepolymers. They exhibited Tgs of 190–216°C and were stable up to 450°C in air or nitrogen. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1847–1854, 1998  相似文献   

17.
The alkylation of 4-methoxyphenol with 2-ethylhexyl bromide was accelerated by using potassium tert-butoxide in dimethylformamide. Subsequent chloromethylation occurred quickly using acetic acid as a cosolvent to give the poly[(2-(2-ethylhexyloxy)-5-methoxy-p-phenylene)vinylene] (MEH-PPV) monomer in 61% overall yield on a 2-mol scale.  相似文献   

18.
Poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3a ), poly{bis(4,4′‐tert‐butyl‐2,2′‐bipyridine)–(2,2′‐bipyridine‐4,4′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3b ), and poly{bis(2,2′‐bipyridine)–(2,2′‐bipyridine‐5,5′‐diyl‐[1,4‐phenylene])–ruthenium(II)bishexafluorophosphate} ( 3c ) were synthesized by the Suzuki coupling reaction. The alternating structure of the copolymers was confirmed by 1H and 13C NMR and elemental analysis. The polymers showed, by ultraviolet–visible, the π–π* absorption of the polymer backbone (320–380 nm) and at a lower energy attributed to the d–π* metal‐to‐ligand charge‐transfer absorption (450 nm for linear 3a and 480 nm for angular 3b ). The polymers were characterized by a monomodal molecular weight distribution. The degree of polymerization was approximately 8 for polymer 3b and 28 for polymer 3d . © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2911–2919, 2004  相似文献   

19.
Nylon 66 [poly(hexamethylene adipamide)] and Nomex [poly(m-phenylene isophthalamide)] were metalated by using solutions of sodium in liquid ammonia. Metalation of the Nomex polymer was also carried out by using sodium naphthalene in tetrahydrofuran. The metalated polymers were then reacted with acrylonitrile monomer to yield the corresponding anionic graft copolymers. The heterogeneous nature of these reactions is discussed in relation to the structure of the graft copolymers.  相似文献   

20.
Substituent‐induced electroluminescence polymers—poly[2‐(2‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(o‐R3Si)PhPPV], poly[2‐(3‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(m‐R3Si)PhPPV], and poly[2‐(4‐dimethyldodecylsilylphenyl)‐1,4‐phenylenevinylene] [(p‐R3Si)PhPPV]—were synthesized according to the Gilch polymerization method. The band gap and spectroscopic data were tuned by the dimethyldodecylsilyl substituent being changed from the ortho position to the para position in the phenyl side group along the polymer backbone. The weight‐average molecular weights and polydispersities were 8.0–96 × 104 and 3.0–3.4, respectively. The maximum photoluminescence wavelengths for (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV appeared around 500–530 nm in the green emission region. Double‐layer light‐emitting diodes with an indium tin oxide/poly(3,4‐ethylenedioxythiophene)/polymer/Al configuration were fabricated with these polymers. The turn‐on voltages and the maximum brightness of (o‐R3Si)PhPPV, (m‐R3Si)PhPPV, and (p‐R3Si)PhPPV were 6.5–8.7 V and 1986–5895 cd/m2, respectively. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2347–2355, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号