首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To simplify the fabrication of multilayer light‐emitting diodes, we prepared a p‐phenylenevinylene‐based polymer capped with crosslinkable styrene through a Wittig reaction. Insoluble poly(p‐phenylenevinylene) derivative (PPVD) films were prepared by a thermal treatment. The photoluminescence and ultraviolet–visible (UV–vis) absorbance of crosslinked films and noncrosslinked films were studied. We also studied the solvent resistance of crosslinked PPV films with UV–vis absorption spectra and atomic force microscopy. Double‐layer devices using crosslinked PPVD as an emitting layer, 2‐(4‐tert‐butylphenyl)‐5‐phenyl‐1,3,4‐oxadiazole (PBD) in poly(methyl methacrylate) as an electron‐transporting layer, and calcium as a cathode were fabricated. A maximum luminance efficiency of 0.70 cd/A and a maximum brightness of 740 cd/m2 at 16 V were demonstrated. A 12‐fold improvement in the luminance efficiency with respect to that of single‐layer devices was realized. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2124–2129, 2004  相似文献   

2.
A new type of conjugated polymer, organoselenium substituted poly(p‐phenyleneviny‐ lene) (PPV), was synthesized from the corresponding alkylselenenyl p‐xylylene dibromide via a Gilch route using potassium tert‐butoxide in THF. The p‐xylylene dibromide precursors were synthesized by reacting lithiated bis(methoxymethyl)benzenes with elemental selenium, followed by alkylation of the generated selenolates. As a final demasking step, the bromomethyl functions were liberated by ether cleavage using boron tribromide. Bis‐alkylselenenyl PPV was obtained with an average molecular weight Mw of approximately 300,000 g/mol and with polydispersity Mw/Mn = 2. Due to low solubility, monoalkylselenenyl PPV was obtained with a considerably lower average molecular weight in the proximity of 16,000 g/mol and with a polydispersity slightly larger than 3. Absorption and fluorescence spectroscopy revealed that the bis‐alkylselenenyl PPV is extensively conjugated. © 2005 Wiley Periodicals, Inc. Heteroatom Chem 16:656–662, 2005; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20167  相似文献   

3.
The development of PPV-systems has moved from intractable powders to solution processible film-forming materials by introducing solubilizing phenyl groups. This opens new uses ranging from thin-film insulators, over photoconductive electrophotographic recording materials, to novel electroactive battery electrodes. In addition, the phenylated PPV may be utilized as a promising thin-film precursor for microstructured carbon patterns with a stable electrical conductivity (σ = 40 S/cm). PPV is not a metal-like conductor, but rather a high-ohmic photoconductor with a band gap of 2.4 eV. It can be made highly conducting upon appropriate chemical or electrochemical treatment (σ= 10−4 − 103 S/cm). The formation of coexisting polymeric ion radicals (polarons) and diions (bipolarons) is well understood in terms of the concept of chain segment redox reactions (ECS concept). A wide variety of PPV derivatives has been synthesized and characterized by their electrochemical oxidation and reduction potentials. Substituents like phenyl, methoxy and cyano groups have a significant influence on the redox potentials of PPV as the standard polymer (EOx = 0.8 V, ERed = −1.7 V). Thus, for poly(1,4-phenylene-1,2-diphenylvinylene) a broadening of the band gap up to 2.9 eV along with an increase of the oxidation potential up to 1.2 V is estimated. The knowledge of the redox potentials which reflect fundamental properties of conjugated polymers is essential for theoretical and practical reasons.  相似文献   

4.
A novel poly(p‐phenylenevinylene) PPV‐based copolymer (3C‐OXD‐PPV) with electron‐deficient oxadiazole segments as the side chain has been successfully synthesized through the Gilch polymerization. The obtained copolymer is soluble in common organic solvents such as chloroform, tetrahydronfuran, and 1,1,2,2‐tetrachloroethane. The copolymer was characterized by 1H NMR, elemental analysis and GPC. TGA measurement of the copolymer shows it has good thermal stability with decomposition temperature higher than 350 °C. The absorption, electrochemical properties of the 3C‐OXD‐PPV were investigated and also compared with the properties of MEH‐PPV. The HOMO and LUMO levels of 3C‐OXD‐PPV were estimated from the electrochemical cyclic voltammograms. Bulk‐heterojunction PVCs were fabricated by using 3C‐OXD‐PPV blended PCBM as an active layer. The PCE of the PVC is 1.60% under 100 mW cm?2 AM 1.5 illumination, which indicates that 3C‐OXD‐PPV is a potential candidate for the application of polymer PVC. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1003–1012, 2009  相似文献   

5.
An N‐phenylcarbazole‐containing poly(p‐phenylenevinylene) (PPV), poly[(2‐(4′‐carbazol‐9‐yl‐phenyl)‐5‐octyloxy‐1,4‐phenylenevinylene)‐alt‐(2‐(2′‐ethylhexyloxy)‐5‐methoxy‐1,4‐phenylenevinylene)] (Cz‐PPV), was synthesized, and its optical, electrochemical, and electroluminescent properties were studied. The molecular structures of the key intermediates, the carbazole‐containing boronic ester and the dialdehyde monomer, were crystallographically characterized. The polymer was soluble in common organic solvents and exhibited good thermal stability with a 5% weight loss at temperatures above 420 °C in nitrogen. A cyclic voltammogram showed the oxidation peak potentials of both the pendant carbazole group and the PPV main chain, indicating that the hole‐injection ability of the polymer would be improved by the introduction of the carbazole‐functional group. A single‐layer light‐emitting diode (LED) with a simple configuration of indium tin oxide (ITO)/Cz‐PPV (80 nm)/Ca/Al exhibited a bright yellow emission with a brightness of 1560 cd/m2 at a bias of 11 V and a current density of 565 mA/cm2. A double‐layer LED device with the configuration of ITO/poly(3,4‐ethylenedioxy‐2,5‐thiophene):poly (styrenesulfonic acid) (60 nm)/Cz‐PPV (80 nm)/Ca/Al gave a low turn‐on voltage at 3 V and a maximum brightness of 6600 cd/m2 at a bias of 8 V. The maximum electroluminescent efficiency corresponding to the double‐layer device was 1.15 cd/A, 0.42 lm/W, and 0.5%. The desired electroluminescence results demonstrated that the incorporation of hole‐transporting functional groups into the PPVs was effective for enhancing the electroluminescent performance. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5765–5773, 2005  相似文献   

6.
We could prepare highly electrically conducting graphitic carbon films and nano patterns by carbonizing the poly(p-phenylenevinylene) (PPV) films and nano patterns prepared on the silicon surface by the chemical vapor deposition polymerization method of α,α'-dichloro-p-xylene. When the PPV films on silicon wafers were thermally treated at 850°C highly oriented graphitic carbon films were obtained which exhibit an electrical conductivity higher than 0.7 x 103 Scm−1. This conductivity value is more than 10 times the value for the carbon films obtained from bulk PPV films or glassy carbons heat treated at the same temperature. Moreover, nano patterns of graphitic carbons were easily obtained on silicon wafers through carbonization of nano patterned PPV obtained by the CVD polymerization method.  相似文献   

7.
Two alkylthio‐substituted poly(p‐phenylenevinylene) (AT–PPV) derivatives, poly(2‐octylthio‐p‐phenylenevinylene) (OT–PPV) and poly[5‐methoxy‐2‐(2′‐ethyl‐hexylthio)‐p‐phenylenevinylene] (MEHT–PPV), were synthesized by a Heck coupling reaction for the investigation of the effect of alkylthio groups on the optoelectronic properties of poly(p‐phenylenevinylene) derivatives. The absorption peaks of OT–PPV and MEHT–PPV solutions were located at 431 and 438 nm, respectively. As for solid films, an OT–PPV film showed an absorption maximum wavelength at 444 nm, 13 nm redshifted in comparison with its solution value, whereas an MEHT–PPV film displayed the same absorption peak position as its dilute solution; this indicated that there was no interchain interaction in the MEHT–PPV film. Polymeric light‐emitting diodes (PLEDs) and polymer solar cells (PSCs) based on OT–PPV and MEHT–PPV were fabricated and characterized. Very narrow bandwidths of the electroluminescence (EL) spectra of the two AT–PPVs were found, with the full width at half‐maximum of the emission being 40 and 47 nm for OT–PPV and MEHT–PPV, respectively. The maximum EL efficiency of the single‐layer PLED based on MEHT–PPV with Al as a cathode reached 1.49 cd/A. The PSC based on a blend of OT–PPV and [6,6]‐phenyl‐C61 butyric acid methyl ester (PCBM) showed the power conversion efficiency of 1.4% under the illumination of AM1.5 (80 mW/cm2). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1279–1290, 2006  相似文献   

8.
A series of new poly(p‐phenylene vinylene) derivatives with different dendritic pendants—poly{2‐[3′,5′‐bis(2″‐ethylhexyloxy)benzyloxy]‐1,4‐phenylenevinylene} (BE–PPV), poly{2‐[3′,5′‐bis(3″,7″‐dimethyl)octyloxy]‐1,4‐phenylenevinylene} (BD–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBE–PPV), poly(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene) (BBD–PPV), and poly[(2‐{3′,5′‐bis[3″,5″‐bis(2?‐ethylhexyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)‐co‐(2‐{3′,5′‐bis[3″,5″‐bis(3?,7?‐dimethyloctyloxy)benzyloxy]benzyloxy}‐1,4‐phenylenevinylene)] (BBE‐co‐BBD–PPV; 1:1)—were successfully synthesized according to the Gilch route. The structures and properties of the monomers and the resulting conjugated polymers were characterized with 1H and 13C NMR, elemental analysis, gel permeation chromatography, thermogravimetric analysis, ultraviolet–visible absorption spectroscopy, photoluminescence, and electroluminescence spectroscopy. The obtained polymers possessed excellent solubility in common solvents and good thermal stability, with a 5% weight loss temperature of more than 328 °C. The weight‐average molecular weights and polydispersity indices of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were in the range of 1.33–2.28 × 105 and 1.35–1.53, respectively. Double‐layer light‐emitting diodes (LEDs) with the configuration of indium tin oxide/polymer/tris(8‐hydroxyquinoline) aluminum/Mg:Ag/Ag devices were fabricated, and they emitted green‐yellow light. The turn‐on voltages of BE–PPV, BD–PPV, BBE–PPV, BBD–PPV, and BBE‐co‐BBD–PPV (1:1) were approximately 5.6, 5.9, 5.5, 5.2, and 4.8 V, respectively. The LED devices of BE–PPV and BD–PPV possessed the highest electroluminescent performance; they exhibited maximum luminance with about 860 cd/m2 at 12.8 V and 651 cd/m2 at 13 V, respectively. The maximum luminescence efficiency of BE–PPV and BD–PPV was in the range of 0.37–0.40 cd/A. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3126–3140, 2005  相似文献   

9.
A poly(p‐phenylenevinylene) (PPV) derivative containing a bulky (2,2‐diphenylvinyl)phenyl group in the side chain, EHDVP‐PPV, was synthesized by Gilch route. The reduced tolane‐bisbenzyl (TBB) defects, as well as the structure of the polymer, was confirmed by various spectroscopic methods. The intramolecular energy transfer from the (2,2‐diphenylvinyl)phenyl side group to the PPV backbone was studied by UV‐vis and photoluminescence (PL) of the obtained polymer and model compound. The polymer film showed maximum absorption and emission peaks at 454 and 546 nm, respectively, and high PL efficiency of 57%. A yellow electroluminescence (λmax = 548 nm) was obtained with intensities of 6479 cd/m2 when the light‐emitting diodes of ITO/PEDOT/EHDVP‐PPV/LiF/Al were fabricated. The maximum power efficiency of the devices was 0.729 lm/W with a turn‐on voltage of 3.6 V. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5636–5646, 2004  相似文献   

10.
A novel thermally stable and semiconducting polyheterocycle, poly(1,3,4-oxadiazole amine), was synthesized from 2-(p-aminophenyl)-1,3,4-oxadiazolin-5-one via ring-opening. The polymer is a new class of ordered alternating copoly(aniline) containing 1,3,4-oxadiazole heterocyclic units. The polymer is highly thermally stable and exhibits no weight loss up to 370°C in air. Its electric conductivity is less than 10−10 S · cm−1 at ambient temperature, but markedly increases to 6,5 · 10−7 S · cm−1 upon doping with iodine.  相似文献   

11.
Poly(p‐phenylene vinylene) (PPV), poly(2,5‐dioctyl‐p‐phenylene vinylene) (PDOPPV), and poly[2‐methoxy‐5‐(2′‐ethylhexyloxy)‐p‐phenylene vinylene] (MEHPPV) were synthesized by a liquid–solid two‐phase reaction. The liquid phase was tetrahydrofuran containing 1,4‐bis(bromomethyl)benzene, 1,4‐bis(chloromethyl)‐2,5‐dioctylbenzene, or 1,4‐bis(chloromethyl)‐2‐methoxyl‐5‐(2′‐ethylhexyloxy)benzene as the monomer and a certain amount of tetrabutylammonium bromide as a phase‐transfer catalyst. The solid phase consisted of potassium hydroxide particles with diameters smaller than 2 mm. The experimental results demonstrated that the reaction conversions of PPV and PDOPPV were fairly high (~65%), but the conversion of MEHPPV was only 45%. Moreover, gelation was found in the polymerization processes. As a result, PPV was insoluble and PDOPPV and MEHPPV were partially soluble in the usual organic solvents, such as tetrahydrofuran and chloroform. Soluble PDOPPV and MEHPPV were obtained with chloromethylbenzene or bromomethylbenzene as a retardant regent. The molar mass of soluble PDOPPV was measured to be 2 × 104 g mol?1, and that of MEHPPV was 6 × 104 g mol?1. A thin, compact film of MEHPPV was formed via spin coating, and it emitted a yellow light. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 449–455, 2003  相似文献   

12.
Water‐soluble and photoluminescent block copolymers [poly(ethylene oxide)‐block‐poly(p‐phenylene vinylene) (PEO‐b‐PPV)] were synthesized, in two steps, by the addition of α‐halo‐α′‐alkylsulfinyl‐p‐xylene from activated poly(ethylene oxide) (PEO) chains in tetrahydrofuran at 25 °C. This copolymerization, which was derived from the Vanderzande poly(p‐phenylene vinylene) (PPV) synthesis, led to partly converted PEO‐b‐PPV block copolymers mixed with unreacted PEO chains. The yield, length, and composition of these added sequences depended on the experimental conditions, namely, the order of reagent addition, the nature of the monomers, and the addition of an extra base. The addition of lithium tert‐butoxide increased the length of the PPV precursor sequence and reduced spontaneous conversion. The conversion into PPV could be achieved in a second step by a thermal treatment. A spectral analysis of the reactive medium and the composition of the resulting polymers revealed new evidence for an anionic mechanism of the copolymerization process under our experimental conditions. Moreover, the photoluminescence yields were strongly dependant on the conjugation length and on the solvent, with a maximum (70%) in tetrahydrofuran and a minimum (<1%) in water. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4337–4350, 2005  相似文献   

13.
Two novel copoly(p‐phenylene)s ( P1 – P2 ) containing bipolar groups (12.8 and 6.8 mol %, respectively), directly linked hole transporting triphenylamine and electron transporting aromatic 1,2,4‐triazole, were synthesized to enhance electroluminescence (EL) of poly(p‐phenylene vinylene) (PPV) derivatives. The bipolar groups not only enhance thermal stability but also promote electron affinity and hole affinity of the resulting copoly(p‐phenylene)s. Blending the bipolar copoly‐(p‐phenylene)s ( P1 – P2 ) with PPV derivatives ( d6‐PPV ) as an emitting layer effectively improve the emission efficiency of its electroluminescent devices [indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) (PEDOT):poly(styrenesulfonate) (PSS)/polymer blend/Ca (50 nm)/Al (100 nm)]. The maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd m?2 and 0.03 cd A?1 ( d6‐PPV ‐based device) to 1450 cd m?2 and 0.20 cd A?1 (blend device with d6‐PPV / P1 = 96/4 containing ~0.5 wt % of bipolar groups), respectively. Our results demonstrate the efficacy of the copoly(p‐phenylene)s with bipolar groups in enhancing EL of PPV derivatives. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
Polymer electrolytes which are adhesive, transparent, and stable to atmospheric moisture have been prepared by blending poly(methyl methacrylate)-g-poly(ethylene glycol) with poly(ethylene glycol)/LiCF3 SO3 complexes. The maximum ionic conductivities at room temperature were measured to be in the range of 10−4 to 10−5 s cm−1. The clarity of the sample was improved as the graft degree increased for all the samples studied. The graft degree of poly(methyl methacrylate)-g-poly(ethylene glycol) was found to be important for the compatibility between the poly(methyl methacrylate) segments in poly(methyl methacrylate)-g-poly(ethylene glycol) and the added poly(ethylene glycol), and consequently, for the ion conductivity of the polymer electrolyte. These properties make them promising candidates for polymer electrolytes in electrochromic devices. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
The linear thermal expansion coefficients of oriented films of poly(p-phenylene-2,5-didodecyloxy-terephthalate) in the three structures B, A, and Lf are reported. The results are interpreted in terms of a molecular laminate model in which the rigid main-chain layers are separated by the aliphatic side chains. In a film oriented unidirectionally the rigid mainchain layers provide a negative contribution to the thermal expansion coefficient, while the side chains supply a positive contribution. Therefore, the resulting expansion coefficient α depends on the details of the main- and side-chain packing and low-temperature values between α = +0.3 × 10?5 K?1 (A and Lf and α = ?1.2 × 10?5 K?1 (B) are found in highly oriented films. Measurements on undrawn films are in accordance with the molecular laminate model. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
A poly(uridylic acid) analogue, poly{[1′‐(β‐uracil‐1‐yl)‐5′‐deoxy‐D‐erythro‐pent‐4′‐enofuranose]‐alt‐[maleic acid]} (3), was synthesized by the alternating copolymerization of nucleoside derivative 1 and maleic anhydride and subsequent hydrolysis. N‐glycosidic bonds of the polymer were hydrolyzed spontaneously to liberate uracil from the polymer backbone in a buffer solution (pH 7.4) at room temperature. The depyrimidination rate constant of the polymer at pH 7.4 at 80 °C was 8.2 × 10−5 s−1, which was 104 times higher than that of the depyrimidination of DNA (1.2 × 10−9 s−1) under the same condition. The activation energy for the depyrimidination was 16 kcal/mol, which was about half of that for the relevant nucleoside reactions. The increase in the depyrimidination rate was attributable to the high potential energy of the polymer caused by the crowded environment around the bases, so that the polymer was more susceptible to the hydrolysis. Because natural nucleic acids often have compact structures with a crowded environment around the bases by an intricate chain folding, the pyrimidination also may have been accelerated in a similar manner in the biological system. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 423–429, 2000  相似文献   

17.
A significant improvement in the electroluminescence (EL) properties was observed for a poly{5‐methoxy‐2‐[(2′‐ethyl‐hexyl)‐oxy]‐p‐phenylenevinylene} (MEH–PPV)/poly(2,3‐diphenyl‐5‐octyl‐p‐phenylenevinylene) (DPO–PPV) blend after a thermal treatment at 200 °C for 2 h in vacuo to furnish the chemical bonding between polymer chains. 1H NMR spectroscopy and two‐photon excitation microscopy revealed that the chemical bonding turned the immiscible polyblend into a system more like a block copolymer with a vertically segregated morphology. Because both the lowest unoccupied molecular orbital and highest occupied molecular orbital levels of MEH–PPV in the wetting layer were higher than those of DPO–PPV in the upper layer, the heterojunction between the two layers of the polymers fit the category of so‐called type II heterojunctions. As a result, the turn‐on voltage of the polymer light‐emitting diode prepared with the thermally treated polyblend decreased to ~0.6 V, and the EL emission intensities and quantum efficiencies increased to about 4 times those of the untreated polyblend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 62–69, 2006  相似文献   

18.
Summary: A new water‐soluble cationic ammonium‐functionalized poly(p‐phenylenevinylene) (PPV‐NEtMe) was successfully synthesized and exhibited high sensitivity (Ksv = 6.9 × 107 M −1) on rubredoxin, a type of anionic iron‐sulfur (Fe‐S) proteins. Further investigation showed that the biosensitivity of the cationic conjugated polymer is strongly dependent on the nature of the buffer solution and the concentration of the conjugated polymer used in the analyses.

The schematic diagram of anionic rubredoxin detected by PPV‐NEtMe.  相似文献   


19.
Mizoroki‐Heck coupling polymerization of 1,4‐bis[(2‐ethylhexyl)oxy]‐2‐iodo‐5‐vinylbenzene ( 1 ) and its bromo counterpart 2 with a Pd initiator for the synthesis of poly(phenylenevinylene) (PPV) was investigated to see whether the polymerization proceeds in a chain‐growth polymerization manner. The polymerization of 1 with tBu3PPd(Tolyl)Br ( 10 ) proceeded even at room temperature when 5.5 equiv of Cy2NMe (Cy = cyclohexyl) was used as a base, but the molecular weight distribution of PPV was broad. The polymerization of 2 hardly proceeded at room temperature under the same conditions. In the polymerization of 1 , PPV with H at one end and I at the other was formed until the middle stage, and the polymer end groups were converted into tolyl and H in the final stage. The number‐average molecular weight (Mn) did not increase until about 90% monomer conversion and then sharply increased after that, indicating conventional step‐growth polymerization. The occurrence of step‐growth polymerization, not catalyst‐transfer chain‐growth polymerization, may be interpreted in terms of low coordination ability of H‐Pd(II)‐X(tBu3P) (X = Br or I), formed in the catalytic cycle of the Mizoroki‐Heck coupling reaction, to π‐electrons of the PPV backbone; reductive elimination of H‐X from this Pd species with base would take place after diffusion into the reaction mixture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 543–551  相似文献   

20.
A poly(inosinic acid) analogue, poly{[1′-(β-hypoxanthine-9-yl)-5′-deoxy-D -erythro-pent-4′-enofuranose]-alt-[maleic acid]} (4), was synthesized by the alternating copolymerization of nucleoside derivative 1 with maleic anhydride and subsequent hydrolysis. N-Glycosidic bonds of the polymer were spontaneously hydrolyzed to liberate hypoxanthine from the polymer backbone in a buffer solution (pH 7.4) at room temperature. The depurination rate constant of the polymer at pH 7.4 and 37°C was measured to be 1.9 × 10−6 sec−1, which was 105-fold higher than that (3 × 10−11 sec−1) of the depurination of DNA that occurred in the biological systems. The increase in the depurination rate was attributable to the high potential energy of the polymer caused by the crowded environment around the bases, so that the polymer was more susceptible to the hydrolysis. Since natural nucleic acids often have compact structures with the crowded environment around the bases by the intricate chain folding, the depurination may also be accelerated in a similar manner in the biological system. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3361–3365, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号