首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Block copolymers containing polystyrene and polycyclooctene were synthesized with a ring‐opening metathesis polymerization/chain‐transfer approach. Polystyrene, containing appropriately placed olefins, was prepared by anionic polymerization and served as a macromolecular chain‐transfer agent for the ring‐opening metathesis polymerization of cyclooctene. These unsaturated polymers were subsequently converted to the corresponding saturated triblock copolymers with a simple heterogeneous catalytic hydrogenation step. The molecular and morphological characterization of the block copolymers was consistent with the absence of significant branching in the central polycyclooctene and polyethylene blocks [high melting temperatures (114–127 °C) and levels of crystallinity (17–42%)]. A dramatic improvement in both the long‐range order and the mechanical properties of a microphase‐separated, symmetric polystyrene–polycyclooctene–polystyrene block copolymer sample was observed after fractionation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 361–373, 2007  相似文献   

2.
Synthesis, characterization and properties of microphase separated mixed (ionic and electronic) conducting or MIEC block copolymers are reported. Poly{[ω-methoxyocta(oxyethylene) methacrylate]-block-(4-vinylpyridine)}, abbreviated as P[MG8–4VP], and poly{(3-methylthiophene)-block-[(ω-methoxyocta(oxyethylene) methacrylate]}, abbreviated as P[3MT-MG8], have been synthesized. Differential scanning calorimetry (DSC) studies indicate that the polymers form a microphase separated structure. P[3MT-MG8] can be doped with I2 and LiClO4 to generate electronic and ionic conducting microdomains, respectively. For the P[3MT-MG8] series, bulk electronic conductivity as high as 1×10−3 S cm−1 and bulk ionic conductivity as high as 6.6×10−7 S cm−1 is observed at 30°C. This work represents a new concept in the area of electroactive polymers and should impact the microelectrochemical device industry.  相似文献   

3.
Graft copolymers show microphase separated structure as seen in block copolymers and have lower intrinsic viscosity than block copolymers because of a branching structure. Therefore, considering molding processability, especially for polymers containing rigid segments, graft copolymers are useful architectures. In this work, graft copolymers containing rigid poly(diisopropyl fumarate) (PDiPF) branches were synthesized by full free‐radical polymerization process. First, synthesis of PDiPF macromonomers by addition‐fragmentation chain transfer (AFCT) was investigated. 2,2‐Dimethyl‐4‐methylene‐pentanedioic acid dimethyl ester was found to be an efficient AFCT agent for diisopropyl fumarate (DiPF) polymerization because of the suppression of undesired primary radical termination, which significantly took place when common AFCT agent, methyl 2‐(bromomethyl)acrylate, was used. Copolymerization of PDiPF macromonomer with ethyl acrylate accomplished the generation of the graft copolymer having flexible poly(ethyl acrylate) backbone and rigid PDiPF branches. The graft copolymer showed a microphase separated structure, high transparency, and characteristic thermal properties to PDiPF and poly(ethyl acrylate). © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2474–2480  相似文献   

4.
Polystyrene‐b‐poly(1,2‐isoprene‐ran‐3,4‐isoprene) block copolymers with azobenzene side groups were synthesized by the esterification of azobenzene acid chloride with polystyrene‐b‐hydroxylated poly(1,2‐isoprene‐ran‐3,4‐isopenre) block copolymers for creating new photochromic materials. The resulting block copolymers with azobenzene side groups were characterized for structural, thermal, and morphological properties. IR and NMR spectroscopies confirmed that the polymers obtained had the expected structures. Differential scanning calorimetric measurements by heating runs clearly showed the glass transitions of polystyrene and polyisoprene main chains and two distinct first‐order transitions at temperatures of azobenzene side groups around 48 and 83 °C. The microstructure of these block copolymer films was investigated using both transmission electron microscopy (TEM) and near‐field optical microscopy (NOM). TEM images revealed typical microphase‐separated morphologies such as sphere, cylinder, and lamellar structures. The domain spacing of microphase‐separated cylindrical morphology in the NOM image agreed with that of the TEM results. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2406–2414, 2002  相似文献   

5.
Telechelic poly(ether ketone)s (PEKs) and polyisobutylenes (PIBs) were combined to form PIB? PEK? PIB triblock copolymers and (PIB? PEK)n multiblock copolymers via the formation of urea linkages. Monovalent and bivalent amino telechelic PIBs were prepared quantitatively from allyl telechelic PIBs by a newly developed reaction sequence featuring nucleophilic reaction steps. Telechelic PEK? NCO polymers were prepared from the corresponding amino telechelic PEKs via a reaction with diphosgene. The highly reactive PEK? NCO and PIB? NH2 telechelics formed PEK? PIB block copolymers only quantitatively when appropriately reactive primary amino groups were present on the amino telechelic PIBs. The obtained block copolymers were microphase‐separated and featured mostly lamellar structures, as determined by small‐angle X‐ray scattering (SAXS). Temperature‐dependent SAXS measurements revealed ordered polymers in the melt up to 210 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 188–202, 2005  相似文献   

6.
Anion exchange membranes (AEMs) are a promising class of materials for applications that require selective ion transport, such as fuel cells, water purification, and electrolysis devices. Studies of structure–morphology–property relationships of ion‐exchange membranes revealed that block copolymers exhibit improved ion conductivity and mechanical properties due to their microphase‐separated morphologies with well‐defined ionic domains. While most studies focused on symmetric diblock or triblock copolymers, here, the first example of a midblock quaternized pentablock AEM is presented. A symmetric ABCBA pentablock copolymer was functionalized to obtain a midblock brominated polymer. Solution cast films were then quaternized to obtain AEMs with resulting ion exchange capacities (IEC) ranging from 0.4 to 0.9 mmol/g. Despite the relatively low IEC, the polymers were highly conductive (up to 60 mS/cm Br? at 90 °C and 95%RH) with low water absorption (<25 wt %) and maintained adequate mechanical properties in both dry and hydrated conditions. X‐ray scattering and transmission electron microscopy (TEM) revealed formation of cylindrical non‐ionic domains in a connected ionic phase. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 612–622  相似文献   

7.
A series of macrocyclic polystyrene (PS)-polydimethylsiloxane (PDMS) block copolymers and similar block copolymers was synthesized by sequential polymerization of styrene and hexamethyl cyclotrisiloxane (D3) initiated by a difunctional anionic initiator in THF at −78° followed by coupling with Cl2SiMe2 in very dilute (10−5 – 10−6 M) solutions. Total molecular weights ranged from about 2–85 × 103. The formation of monodisperse macrocyclic block copolymers was indicated by the lower (15–30%) hydrodynamic volume of the rings compared to that of the linear block copolymers. Carbon-13 and 29Si NMR likewise supported the absence of linear polymer in the macrocyclic block copolymer. The behavior of second virial coefficient A2 of the rings and the linears versus temperature was examined by static light scattering in cyclohexane. Below 20° the A2 for the linear polymer goes negative while that for the cycle remains positive. Dynamic light scattering (DLS) as a function of temperature also reflects that the cyclic polymers remain well solvated even down to 12°C. The DLS autocorrelation functions for the linear triblock however demonstrate the onset of aggregation and phase separation as the temperature is reduced below 20°C.  相似文献   

8.
A series of polyarylaminophosphazene copolymers have been prepared and are described. In each preparation, two arylamines were allowed to competitively react with polydichlorophosphazene, and the substituent ratios of the resulting copolymers, determined by high-temperature 1H-NMR spectroscopy, generally reflect expected steric and electronic effects on the relative reactivities of the arylamines studied. The copolymers have intrinsic viscosities of 0.64–1.25 dl/g, glass transition temperatures of 75–104°C, and decomposition temperatures of 220–260°C. These properties, which are comparable to those of polyarylaminophosphazene homopolymers, are discussed in regard to what they may reflect about the structure of the polymers.  相似文献   

9.
Formation of higher‐order structure in crystallization from microphase‐separated melts was studied for polystyrene–polyethylene (PS–PE) diblock copolymers and PS–PE–PS triblock copolymers with time‐resolved synchrotron small‐angle X‐ray scattering (SR–SAXS) techniques. The PE block was crystallized at temperatures when the PS block was in the glassy state. In both crystallization and melting processes, only the peak intensity in the SR–SAXS curve changed, however, the peak positions including higher‐order peaks did not change. This means that the microphase‐structure in the crystalline state was completely the same as that in the molten state. These behaviors were observed regardless of any melt microphase structure. Also, once a stable microphase structure was formed in the molten state, the structure was not changed even if crystallization and melting were repeated. Behavior of crystallization from such microphase‐separated melts was also studied. Apparent activation energies of crystallization were high for all block copolymers, compared with that for the PE homopolymer. In particular, the triblock copolymers showed higher apparent activation energies than the diblock copolymers. Both degrees of crystallinity and Avrami indices were greatly suppressed in crystallization from the cylindrical domain. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4199–4206, 2004  相似文献   

10.
A novel sulfonated diamine monomer, 2,2′‐bis(p‐aminophenoxy)‐1,1′‐binaphthyl‐6,6′‐disulfonic acid (BNDADS), was synthesized. A series of sulfonated polyimide copolymers containing 30–80 mol % BNDADS as a hydrophilic component were prepared. The copolymers showed excellent solubility and good film‐forming capability. Atomic force microscopy phase images clearly showed hydrophilic/hydrophobic microphase separation. The relationship between the proton conductivity and degree of sulfonation was examined. The sulfonated polyimide copolymer with 60 mol % BNDADS showed higher proton conductivity (0.0945–0.161 S/cm) at 20–80 °C in liquid water. The membranes exhibited methanol permeability from 9 × 10?8 to 5 × 10?7 cm2/s at 20 °C, which was much lower than that of Nafion (2 × 10?6cm2/s). The copolymers were thermally stable up to 300 °C. The sulfonated polyimide copolymers with 30–60 mol % BNDADS showed reasonable mechanical strength; for example, the maximum tensile strength at break of the sulfonated polyimide copolymer with 40 mol % BNDADS was 80.6 MPa under high moisture conditions. The optimum concentration of BNDADS was found to be 60 mol % from the viewpoint of proton conductivity, methanol permeability, and membrane stability. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 222–231, 2007  相似文献   

11.
Thermoplastic elastomers composed of soft and hard segments are important elastic and processable synthetic polymers. The microphase‐separated soft domains show low glass transition temperature and possess sufficient chain mobility at room temperature. In this study, we report the synthesis and healing properties of multiblock copolymers containing disulfide bonds as dynamic covalent bonds. The multiblock copolymers composed of poly(arylether sulfone) and poly(alkylthioether) segments were synthesized by oxidative coupling polymerization of the corresponding thiol‐terminated oligomers. Atomic force microscopy phase images, differential scanning calorimetry, and dynamic mechanical analysis curves indicated the microphase‐separated morphology of the multiblock copolymer. Self‐healing properties of the polymer were evaluated by changes in the elongation at break of the cut/adhered samples. The elongation recovery increased with UV irradiation time, and the multiblock copolymer showed a 93% recovery after UV irradiation for 5 h. The healing efficiency induced by UV irradiation, determined by subtracting the recovery without UV irradiation, was calculated to be 51%. According to the UV spectra and solubility changes after UV irradiation, the main healing factor in this study was the crosslinking reactions caused by thiyl radicals generated from UV irradiation instead of disulfide exchange reactions. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3545–3553  相似文献   

12.
9,9‐Bis(3‐methyl‐4‐hydroxyphenyl)xanthene (BMHPX) was synthesized in 72% yield by a HCl/ZnCl2‐catalyzed condensation reaction of xanthenone with excess o‐cresol. Based on this new bisphenol monomer, a series of poly(arylene ether nitrile) (PAEN) and PAEN copolymers containing methyl substituent and cardo xanthene moiety were prepared by the nucleophilic substitution reaction of 2,6‐difluorobenzonitrile (DFBN) with BMHPX and with varying mole proportions of BMHPX to hydroquinone (HQ) (100/0–40/60) using N‐methyl‐2‐pyrrolidone (NMP) as solvent in the presence of anhydrous potassium carbonate. These polymers had inherent viscosities between 0.54 and 0.72 dl/g, and their weight‐average molecular weights and number‐average molecular weights were in the range of 32,600–36,400 and 17,300–18,300, respectively. All PAENs were amorphous and were soluble in dipolar aprotic solvents such as NMP and N,N‐dimethylacetamide (DMAc), and even in THF and chloroform at room temperature. The resulting polymers showed glass transition temperatures (Tg's) between 213–226°C, and the Tg values of the copolymers were found to increase with increase of the BMHPX units content in the polymer. Thermogravimetric studies showed that all the polymers were stable up to 404°C, with 10% weight loss temperatures ranging from 444 to 455°C, and char yields of 52–58% at 700°C in nitrogen. All new PAENs could be cast into transparent, strong, and flexible films with tensile strengths of 102–120 MPa, elongations at break of 14–18%, and tensile moduli of 3.3–3.7 GPa. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Two PEG-based copolymers containing two different chain extenders, as hard segments, were synthesized by 4,4′-methylenediphenyl diisocyanate (MDI). The chain extenders were 1,4-butane diol (BDO) and 1,2-ethane diamine (EDA). The application of the polyurethane (PU) and poly(urethane-urea)s (PUU)s synthesized polymers, which were characterized by Fourier transform infrared spectrometer (FTIR), differential scanning calorimetry (DSC) and atomic Force Microscopy (AFM), in the gas permeability was investigated. The obtained results indicated that by replacing the urea linkage in the polymers, the microphase separation of hard and soft segments increased. The synthesized PEG-based copolymers were semi-crystalline at room temperature. According to the DSC results, the crystallinity of the synthesized polyurethanes decreased as temperature increased. In addition, a reduction in mean surface roughness could be seen based AMF information. The gas (carbon dioxide and methane) separation properties of the polymers revealed that by replacing the urea linkage, the diffusivity, permeability and selectivity of the gases increased slightly.

The solubility and diffusivity of gases indicated he solubility domination of gas transport in these membranes. However, the sorption coefficient (S) of a particular gas was surprisingly constant for the two synthesized polymers. The CO2 permeability increased with increasing feed pressure, while CH4 permeability remained almost constant at both temperatures of 25°C and 35°C. The increase in temperature led to an increase in the permeability of the gases and a decrease in the gas selectivity for the both synthesized polyurethanes.  相似文献   

14.
ABA‐type triblock copolymers and AB‐type star diblock copolymers with poly(2‐adamantyl vinyl ether) [poly(2‐AdVE)] hard outer segments and poly(n‐butyl vinyl ether) [poly(NBVE)] soft inner segments were synthesized by sequential living cationic copolymerization. Although both the two polymer segments were composed solely of poly(vinyl ether) backbones and hydrocarbon side chains, they were segregated into microphase‐separated structure, so that the block copolymers formed thermoplastic elastomers. Both the ABA‐type triblock copolymers and the AB‐type star diblock copolymers exhibited rubber elasticity over wide temperature range. For example, the ABA‐type triblock copolymers showed rubber elasticity from about ?53 °C to about 165 °C and the AB‐type star diblock copolymer did from about ?47 °C to 183 °C with a similar composition of poly(2‐AdVE) and poly(NBVE) segments in the dynamic mechanical analysis. The AB‐type star diblock copolymers exhibited higher tensile strength and elongation at break than the ABA‐type triblock copolymers. The thermal decomposition temperatures of both the block copolymers were as high as 321–331 °C, indicating their high thermal stability. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Structural (X‐ray diffraction), melting (differential scanning calorimetry), as well as mechanical (tensile tests) characterizations on uncrosslinked ethene–propene copolymer samples, obtained using a metallocene‐based catalytic system and having an ethene content in the range 80–50% by mol, are reported. Samples with an ethene content in the range 80–60% by mol present a disordered pseudohexagonal crystalline phase, whose melting moves from ≈ 40°C down to ≈ −20°C as the ethene content is reduced. The dramatic influence of the crystalline phase on tensile properties of uncrosslinked ethene–propene copolymers is shown. In particular, highest elongation at break values are obtained for samples being essentially amorphous in the unstretched state and partially crystallizing under stretching. On the other hand, lowest tension set values (most elastic behavior) are observed for samples presenting, already in the unstretched state, microcrystalline domains acting as physical crosslinks in a prevailing amorphous phase. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1095–1103, 1999  相似文献   

16.
Thermotropic POSS‐containing poly(methacrylate) with long alkyl chain tethered polyhedral oligomeric silsesquioxane (POSS) in the side chain and the block copolymers (PMMA‐b‐PMAC11POSS) were developed by through living anionic polymerization. The resulting polymers indicated a phase transition temperature at 112 °C from spherocrystal to isotropic phase. The POSS‐containing polymer segments tended to form matrix of microphase‐separated nanostructures in the bulk even in the very low volume fraction, for instance, PMMA cylindrical nanostructure was obtained by PMMA175b‐PMAC11POSS11 (?PMAC11POSS = 0.44). The control of thin film morphology was carried out by not only solvent annealing, but also thermal annealing, resulting in the formation of well‐ordered dot‐ and fingerprint‐type nanostructures. This is the first report in a series of POSS‐containing block polymers that are capable for thermal annealing to generate well‐ordered microphase‐separated nanostructures in thin films. The novel thermotropic POSS‐containing block copolymer offers a promising material for block copolymer lithography. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
Dimethyl bicyclobutane‐1,3‐dicarboxylate was synthesized. Its homopolymer (PDBD) containing exclusively cyclobutane rings in its backbone was prepared by free radical polymerization. The copolymers of this bicyclobutane monomer with methyl methacrylate were also prepared. The glass transition temperature of the homopolymer is 159°C, while those of its copolymers are 143 and 121°C with 75/25 and 50/50 of the P(DBD/MMA) composition ratio, respectively. The Tg of PDBD homopolymer is substantially higher than that of commercial PMMA homopolymer despite a lower molecular weight, and is also much higher than that of its monomethyl cyclobutanecarboxylate analogue. These DBD homopolymer and copolymers also show better thermostability than the PMMA homopolymer. The weight‐average molecular weight of homopolymer is 37,000. The polydispersities of these polymers are relatively narrow, with the range of 1.6–1.9. These polymers form clear colorless films resembling PMMA film. The DBD homopolymer film shows a very similar optical cutoff compared to PMMA. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1569–1575, 1999  相似文献   

18.
Polyimide copolymers containing 2,2′‐bipyridine were synthesized and characterized. The glass‐transition temperatures (Tg's) of the polymers ranged from 260 to 300 °C. In contrast to most known organic chromophore‐containing polyimides, the polyimide copolymers in this study showed elevated Tg's (270–320 °C) after coordination with nickel malenonitriledithiolate inorganic chromophores. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 498–503, 2000  相似文献   

19.
Two different initiator/transfer agents (inifers) containing an alkoxyamine and a dithiobenzoate were synthetized and used to trigger out either reversible addition‐fragmentation chain transfer (RAFT) polymerization or nitroxide‐mediated polymerization (NMP). α‐Dithiobenzoate‐ω‐alkoxyamine‐difunctional polymers were produced in both cases which were subsequently used as precursors in the formation of block copolymers. This synthetic approach was applied to N‐isopropylacrylamide (NIPAM) or polyethylene oxide methacrylate (EOMA) to form α,ω‐heterodifunctional homopolymers via RAFT at 60°C which were chain extended with styrene by activating the alkoxyamine moiety at 120°C. Under such temperature conditions, it is proposed that a tandem NMP/RAFT polymerization is initiated producing a simultaneous growth of polystyrene blocks at both chain‐ends. Self‐assembled nanostructures of these amphiphilic block copolymers were evidenced by scanning electron microscopy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

20.
Commercial purity Ta-V alloys containing 0–60 at.% V were fabricated into wire at room temperature. Reductions in area of greater than 99% were possible without intermediate annealing. TaV2 was present in the 50 and 60 at.% V alloys. Recrystallization and mechanical property data are given. Alloys containing 0–40 at.% V have a low rate of work hardening and good properties at 1000°C and they do not show a ductile-to-brittle transition down to −195°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号