首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N‐Isopropyl‐4‐vinylbenzylamine (PVBA) was synthesized and used as an initiator for the polymerization of methacrylates to synthesize macromonomers with terminal styrenic moieties. LiPVBA initiated a living polymerization and block copolymerization of methyl methacrylate, 2‐(N,N‐dimethylamino)ethyl methacrylate and tert‐butyl methacrylate and produced polymers having well‐controlled molecular weights and very low polydispersities (w/n < 1.1) in quantitative yield. 1H NMR analysis revealed that the polymers contained terminal 4‐vinylbenzyl groups. The macromonomers were reactive in the copolymerization with styrene.  相似文献   

2.
Styrenic single and double star‐tailed macromonomers were synthesized by selective reaction of living homo/miktoarm stars with the chlorosilane groups of 4‐(chlorodimethylsilyl)‐ and 4‐(dichloromethylsilyl)styrene, respectively. The in situ anionic homopolymerization of macromonomers with sec‐BuLi and copolymerization with butadiene and styrene, led to single/double homo/miktoarm star‐tailed molecular brushes and combs, as well as a block copolymer consisting of a linear polystyrene chain and a double miktoarm (PBd/PS) star‐tailed brush‐like block. Molecular characterization by size exclusion chromatography, size exclusion chromatography/two‐angle laser light scattering, and NMR spectroscopy, revealed the high molecular/compositional homogeneity of all intermediate and final products. These are only a few examples of the plethora of complex architectures possible using the above macromonomers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 1826–1842, 2008  相似文献   

3.
Ethyl-2-(2-cyano-2-ethylthio)-ethyl-propenoate (ECEP) was synthesized and examined as free-radical addition–fragmentation chain transfer agent (AFCTA) in the bulk polymerization of methyl methacrylate (MMA) and styrene at various temperatures. A better chain transfer constant (Ctr) was observed for styrene than for MMA, projecting the potentiality of the compound as a better end-functionalizing agent for the former. In both cases, copolymerization of ECEP with the monomer predominated over fragmentation, the relative proportions of which were dependent on the monomer. The ECEP-terminated radical fragmented to an extent of 26% in the presence of MMA, whereas it was only 9.5% in the case of styrene. The relative extent of fragmentation and copolymerization was in conformation to the calculated reactivity ratios and chain transfer constants. Addition–fragmentation chain transfer resulted in the formation of methacrylic-functional macromonomers. The copolymerizability of the resultant macromonomer was found to depend on the nature of the backbone and on the comonomer. On copolymerizing with MMA, the terminal monomer moiety on polystyrene (PS)-based macromonomers preferred to undergo fragmentation, whereas that of the polymethyl methacrylate (PMMA)-based one copolymerized readily with styrene because of thermodynamic and kinetic factors. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2511–2524, 1999  相似文献   

4.
Branched polystyrene macromonomers were synthesized by the slow addition of a stoichiometric amount of either 4‐(chlorodimethylsilyl)styrene or vinylbenzyl chloride as a coupling agent to living polystyryllithium. Star‐shaped macromonomers were produced by the addition of the coupling agent alone, and hyperbranched macromonomers resulted from the addition of the coupling agent along with styrene monomer. Star and hyperbranched graft copolymers were produced by the copolymerization of the macromonomers with styrene and methyl methacrylate. The copolymers were characterized by gel permeation chromatography coupled with multi‐angle laser light scattering, 1H NMR spectroscopy, and Soxhlet extraction to determine that the macromonomers were incorporated in high yields into the copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3547–3555, 2001  相似文献   

5.
Novel macromonomers of polystyrene and poly(tert‐butyl acrylate) containing a methacryloyl group as a polymerizable unit and two chains of the same length were prepared in two steps: the synthesis of the precursors through the atom transfer radical polymerization of styrene and tert‐butyl acrylate initiated by 1‐hydroxymethyl‐1,1‐di[(2‐bromoisobutyryloxy)methyl] ethane and the esterification of the hydroxyl group in the precursors with methacryloyl chloride. The molecular weight and polydispersity of the macromonomers were controllable because of the living nature of the atom transfer radical polymerization. Gel permeation chromatography, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, and hydrolysis confirmed the structure of the novel macromonomers. The homopolymerization and copolymerization of the macromonomers were investigated to prepare branched copolymers in which two chains were grafted from every repeating unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3887–3896, 2004  相似文献   

6.
The composition and properties of the surface layers of poly(styrene/α-t-butoxy-ω-polyglycidol) [poly(styrene/VB-polyGL)] microspheres synthesized by the radical copolymerization of styrene and α-t-butoxy-ω-vinylbenzyl-polyglycidol (VB-polyGL) macromonomers [number-average molecular weight (Mn) = 950 or 2700] were investigated with X-ray photoelectron spectroscopy, 13C NMR, and the adsorption of human serum albumin and γ-globulins. The number-average diameter of the synthesized microspheres was 220 nm. Their surface layers were rich in polyglycidol, with polyglycidol-to-polystyrene unit ratios of 0.443 (VB-polyGL with Mn = 950) and 0.427 (VB-polyGL with Mn = 2700). In suspensions of poly(styrene/VB-polyGL) particles in D2O, the polymer chains in the polyglycidol-rich surface layers were highly mobile, allowing the registration of polyglycidol 13C NMR spectra with standard procedures for polymer solutions. In these spectra, the signals of the relatively immobile polystyrene segments were absent. The spin–lattice relaxation times (T1) measured for polyglycidol in the microsphere surface layers and for VB-polyGL macromonomers in solution were very close, indicating similar degrees of motion in bound (in particle surface layers) and free (in solution) polyglycidol macromolecules. Studies of protein adsorption revealed that hydrophilic polyglycidol layers were protein-repellent. It was found that longer polyglycidol chains in particle surface layers were more mobile (higher T1 values) and provided better protection against protein adsorption. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 615–623, 2004  相似文献   

7.
Attachment of oxazoline-based hyperbranched macromonomers to a trimesic acid core affording trimers of the hyperbranched fragments as well as polymerization of the oxazoline groups is reported. Polymerization and copolymerization with 2-phenyl-1,3-oxazoline were investigated for two macromonomers (M w = 1700 and 8 000, respectively), resulting in hyperbranched analogs of combburst polymers. Homopolymerization of the macromonomers yielded a degree of polymerization DP ≈ 15. Hyperbranched trimers and the polyethyleneimines with apolar hyperbranched carbosilane side-chains form superstructures in solution and in bulk.  相似文献   

8.
Polystyrene macromonomers with different molecular weight were prepared by radical polymerization of styrene(St) in benzene using β-methacryloxylethyl 2-N,N-diethyldithiocarbamylacetate (MAEDCA) as a monomer-iniferter.Characterization of the macromonomer by ~1H-NMR showed that the end groups were α-methacrylyoxylethyloxycarbonyl-methyl and ω-(N,N-diethyldithiocarbamyl). The macromonomer was difficult to homopolymerize, but it was easilycopolymerized with methyl methacrylate (MMA) initiated by AIBN to form graft copolymers (PMMA-g-PSt) with PStbranches randomly distributed along the PMMA backbone. Copolymerization reaction and the structure of the graftcopolymers were strongly affected by M_n and concentration of the macromonomer. The composition and M_n of the purified graft copolymer were determined by ~1H-NMR and GPC analysis.  相似文献   

9.
Under a variety of conditions it has not been possible to induce the free-radical-initiated homopolymerization of α-methacrylophenone (α-MAP). The only product isolated from such efforts was the Diels-Alder dimer of the monomer. A Mayo-Lewis plot of the free-radical copolymerization of α-MAP and styrene shows considerable scatter but the copolymer composition indicates that an α-MAP unit can add to itself. These results have been ascribed to a penultimate effect. α-MAP is homopolymerized by dimsylsodium or n-butyllithium. Attempted copolymerization of α-map and styrene with n-butyllithium produces >95% α-MAP. Unexpectedly, α-MAP does not homopolymerize with lithium dispersion, but does react in the presence of styrene to give product containing a relatively small amount of α-MAP.  相似文献   

10.
Aqueous micellar polymerization of amphiphilic poly(ethylene oxide) macromonomers carrying p-vinylphenylheptyl end-group has been found to persist to proceed after turning-off of the UV-irradiation. Simulation of the kinetics revealed a high propagation rate constant coupled with a low termination constant, supporting a living-like polymerization at the initial stage. Micellar copolymerization with equimolar styrene also proceeded after UV-irradiation. Polymer molecular weights in MALLS-SEC were also found to evolve with time after irradiation.  相似文献   

11.
Four new substituted styrene derivatives carrying lactam rings (2-pyrrolidone or 2-piperidone) in para position have been synthesized, namely 4-(2-oxo-3-methylene-pyrrolidinyl)styrene, 4-(2-oxo-3-methylene-piperidinyl)styrene, 4-(p-styryl)-2-pyrrolidone, and 4-(p-styryl)-2-piperidone. Their homopolymerization and copolymerization with styrene, methyl methacrylate, and acrylic acid have been considered. By ring opening of the side lactam groups, the homopolymers are transformed into the corresponding poly aminocarboxylic acids.  相似文献   

12.
Functional poly(ethylene oxide) stars were prepared by free‐radical copolymerization of poly(ethylene oxide) macromonomers with divinylbenzene in water. The poly(ethylene oxide) arm was prepared by anionic polymerization using 2‐[2‐(N,N‐dimethylamino)ethoxy]ethanol potassium alkoxide as the initiator. These functional stars were converted into peripherally charged stars by quaternization of the peripheral tertiary amino groups with methyl iodide.  相似文献   

13.
Monodisperse polymeric nanospheres, which consist of polystyrene cores and poly(ethylene glycol) (PEG) branches on their surfaces, were prepared by the dispersion copolymerization of styrene (St) with PEG macromonomers that had a methacryloyl (MMA-PEG) or p-vinylbenzyl (St-PEG) end group in various organic solvent/water media. Electron spectroscopy for chemical analysis (ESCA) of the nanosphere surfaces indicated that PEG macromonomer chains were favorably located on their surfaces. The morphologies of the nanospheres were observed via a scanning electron micrograph (SEM), and particle sizes were estimated by a submicron particle analyzer. When both the concentration of macromonomers and molecular weight were higher, small nanospheres in diameter were obtained. Larger nanospheres in diameter were obtained using macromonomers with low molecular weight at lower concentration. The functions that correlate the diameter (Dn) on different concentration units were Dn = K[St]0.64[MMA-PEG]−0.53±0.01[I]−0.49 and Dn = K[St]0.80[St-PEG]−0.69±0.01[I]−0.22, where [I], [St], [MMA-PEG], and [St-PEG] are initiator, styrene, MMA-PEG, and St-PEG macromonomer concentration in feed, respectively. When the reaction parameters such as the molecular weight of the macromonomers were properly chosen, the particle size could be controlled in a range from ca. 80 to 3100 nm. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 2155–2166, 1999  相似文献   

14.
The rate of solution copolymerization of styrene (M1) and 2-hydroxyethyl methacrylate (M2) was investigated by dilatometry. N,N-dimethyl formamide, toluene, isopropyl alcohol, and butyl alcohol were used as solvents. Polymerization was initiated by α,α′-azobisisobutyronitrile at 60°C. The initial copolymerization rate increased nonlinearly with increasing 2-hydroxyethyl methacrylate (HEMA)/styrene ratio. The copolymerization rate was promoted by solvents containing hydroxyl groups. Two different approaches were used for the prediction of copolymerization rates. The relationships proposed for the copolymerization rates calculation involve the effects of the total monomer concentration, mole fraction of HEMA, and of the solvent type. Different reactivity ratios were found in polar and nonpolar solvents: r1 = 0.53, r2 = 0.59 in N,N-dimethyl formamide, isopropyl alcohol and n-butyl alcohol; r1 = 0.50, r2 = 1.65 in toluene. The usability of these reactivity ratios was confirmed by batch experiments.  相似文献   

15.
α-Alkylacrylic acids (RAA's) bearing n-alkyl groups were found to homopolymerize with slower rates than acrylic and methacrylic acids to number-average molecular, weight (M?n) of 104 or above. When the α-substituent was a branched alkyl group, the polymerization rate and M?n decreased further. Reactivities of RAA's in copolymerization were interpreted by steric and resonance effects of the alkyl group using Hancock's steric substituent constant. Comparison of the reactivities of RAA's with those of methyl α-alkylacrylates revealed that replacement with the smaller carboxyl group facilitates polymerization and copolymerization. Preference of co-syndiotactic propagation in the copolymerization of methacrylic acid with styrene changed to random fashion in the copolymerization of the α-higher alkyl derivatives. After methylation with diazomethane, the homopolymers were shown to be thermally less stable than poly(methyl methacrylate). Tg's of poly(methyl α-ethylacrylate) and poly(methyl α-n-propylacrylate) were 57 and 25°C, respectively.  相似文献   

16.
The study of copolymerization of styrene with small amounts (≤0.04 wt %) of divinylbenzenes (DVB) offers advantages over similar studies made at high DVB concentrations. A simple set of equations can be used to describe the kinetics of copolymerization at low DVB concentrations. Experimental data show that the copolymerization constants (r2) for the copolymerization of the first double bonds of m- and p-DVB (monomer 1) with styrene (monomer 2) are 0.85 and 0.43, respectively. In contrast to findings at higher DVB concentrations these constants do not change during the first half of the polymerization. After 50% conversion an autoacceleration effect reduces the selectivity of the growing polystyrene radical. The copolymerization constants for the second double bonds of m- and p-DVB during the first half of the polymerization are estimated as 1.  相似文献   

17.
Abstract

The copolymerization products of α-pinene and styrene were prepared with the compound catalyst system SbCl3/AlCl3 by changing the Sb/Al ratio, feeding monomer ratio, solvent, and polymerization temperature. The compositions of the copolymerization products were quantitatively characterized by the method of the combination of micro-ozonization and thin-layer chromatography in terms of the contents of the homopolymers and the copolymers containing high or low mole fractions of α-pinene, the yields of pure copolymer, and the monomer unit ratios (F 1) of copolymers. The results show that it was easier to obtain the higher yield (up to 80%) of the pure copolymer with the complex catalyst system than with AlCl3 alone. The F 1 values could be controlled between 30 and 56% under the following polymerization conditions: Sb/Al  1/2, α-pinene/styrene  70%, and the conversion of styrene  90%.  相似文献   

18.
Poly(ethylene oxide) (PEO) macromonomers with α-p-vinylphenylalkyl (propyl, pentyl, and hexyl) and ω-hydroxy end groups were applied to emulsion and dispersion polymerization of styrene as reactive emulsifiers and dispersants in water and in methanol-water mixture (9:1 v/v), respectively. Nearly monodisperse microspheres of submicron to micron size were obtained. Particle size in the emulsion system was one or half order of magnitude smaller than that in the dispersion system, while in both systems the size decreased approximately according to minus one half power of the macromonomer concentration in weight. The particle size was substantially independent on the PEO chain length and also on the spacer alkyl chain length of the α-polymerizing end group. The total weight of the PEO chains incorporated by copolymerization into the particle surfaces (shells), relative to that of styrene polymerized into the particle cores, appears to be a key factor for controlling the particle size. To cite this article: K. Landfester et al., C. R. Chimie 6 (2003).  相似文献   

19.
储鸿  杨伟  陈明清  陆剑燕  施冬健  明石满 《中国化学》2008,26(10):1907-1912
以α-溴代丙酸乙酯(EPN-Br)为引发剂, N,N, N′,N″,N″-五甲基二亚乙基三胺(PMDETA)为配体,使甲基丙烯酸叔丁酯进行原子转移自由基聚合,合成了端基带溴原子的聚甲基丙烯酸叔丁酯(PtBMA-Br)大分子中间体,通过其与甲基丙烯酸的亲核取代反应,得到了末端C=C双键含量高的大分子单体(MAA-PtBMA),其相对分子质量可控制在5400-12000g/mol的范围内,分子量分布≤1.20。以偶氮二异丁腈为自由基引发剂,在乙醇中使MAA-PtBMA大分子单体与苯乙烯(St)进行分散共聚,制得了甲基丙烯酸叔丁酯接枝聚苯乙烯(PtBMA-g-PSt)微米级共聚微球,该微球具有核壳结构。  相似文献   

20.
可聚合的光引发转移终止剂合成接枝共聚物   总被引:4,自引:0,他引:4  
采用一种可聚合的光引发转移终止剂 ,2 N ,N 二乙基二硫代氨基甲酰氧基乙酸 β 甲基丙烯酰氧基乙酯 (MAEDCA) ,通过两种途径制备了含有聚甲基丙烯酸甲酯 (PMMA)和聚苯乙烯 (PSt)链段的接枝共聚物 .其一是将MAEDCA作为引发剂 ,在紫外光照射下引发MMA聚合 ,得到大分子单体 ,通过大分子单体与St的共聚合得到 .考察了所用大分子单体的分子量和浓度对共聚合的影响 .其二是将MAEDCA作为单体与MMA共聚得到侧链上含有N ,N 二乙基二硫代氨基甲酰氧基 (DC)基团的无规共聚物 ,P(MMA co MAEDCA) .在紫外光照射下 ,P(MMA co MAEDCA)作为大分子引发剂引发St聚合 ,得到P(MMA co MAEDCA) g PSt的共聚物 ,研究了接枝共聚合过程的活性自由基聚合特征  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号